BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30737066)

  • 1. Electro-conversion of carbon dioxide (CO
    Zhang Z; Song Y; Zheng S; Zhen G; Lu X; Kobayashi T; Xu K; Bakonyi P
    Bioresour Technol; 2019 May; 279():339-349. PubMed ID: 30737066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.
    Zhen G; Kobayashi T; Lu X; Xu K
    Bioresour Technol; 2015 Jun; 186():141-148. PubMed ID: 25812818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis.
    Blasco-Gómez R; Batlle-Vilanova P; Villano M; Balaguer MD; Colprim J; Puig S
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28425974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive comparison of five different carbon-based cathode materials in CO
    Zhen G; Zheng S; Lu X; Zhu X; Mei J; Kobayashi T; Xu K; Li YY; Zhao Y
    Bioresour Technol; 2018 Oct; 266():382-388. PubMed ID: 29982061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane.
    Baek G; Kim J; Lee S; Lee C
    Bioresour Technol; 2017 Oct; 241():1201-1207. PubMed ID: 28688737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications.
    Palacios PA; Philips J; Bentien A; Kofoed MVW
    Biotechnol Adv; 2024; 73():108369. PubMed ID: 38685440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane.
    Schlager S; Haberbauer M; Fuchsbauer A; Hemmelmair C; Dumitru LM; Hinterberger G; Neugebauer H; Sariciftci NS
    ChemSusChem; 2017 Jan; 10(1):226-233. PubMed ID: 27792284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing CH
    Qi X; Jia X; Li M; Chen W; Hou J; Wei Y; Fu S; Xi B
    Sci Total Environ; 2024 Apr; 920():170992. PubMed ID: 38365016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambient CO2 capture and storage in bioelectrochemically mediated wastewater treatment.
    Huang Z; Jiang D; Lu L; Ren ZJ
    Bioresour Technol; 2016 Sep; 215():380-385. PubMed ID: 27020397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surpassing the current limitations of high purity H
    Kadier A; Kalil MS; Chandrasekhar K; Mohanakrishna G; Saratale GD; Saratale RG; Kumar G; Pugazhendhi A; Sivagurunathan P
    Bioelectrochemistry; 2018 Feb; 119():211-219. PubMed ID: 29073521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromethanogenesis: the direct bioconversion of current to methane.
    Booth B
    Environ Sci Technol; 2009 Jul; 43(13):4619. PubMed ID: 19673242
    [No Abstract]   [Full Text] [Related]  

  • 17. Optimizing bioelectromethanosynthesis of CO
    Hu W; Zheng S; Wang J; Lu X; Han Y; Wang J; Zhen G
    Chemosphere; 2024 Jun; 358():142119. PubMed ID: 38697567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell.
    Spiess S; Sasiain Conde A; Kucera J; Novak D; Thallner S; Kieberger N; Guebitz GM; Haberbauer M
    Front Bioeng Biotechnol; 2022; 10():972653. PubMed ID: 36159676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A large cathode surface area promotes electromethanogenesis at a proper external voltage in a single coaxial microbial electrolysis cell.
    Li Y; Wang S; Dong R; Li X
    Sci Total Environ; 2023 Apr; 868():161721. PubMed ID: 36682571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.