These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30737066)

  • 41. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors.
    Hashiba H; Yotsuhashi S; Deguchi M; Yamada Y
    ACS Comb Sci; 2016 Apr; 18(4):203-8. PubMed ID: 27003626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatic conversion of carbon dioxide.
    Shi J; Jiang Y; Jiang Z; Wang X; Wang X; Zhang S; Han P; Yang C
    Chem Soc Rev; 2015 Oct; 44(17):5981-6000. PubMed ID: 26055659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.
    Zhang Y; Angelidaki I
    Water Res; 2014 Jun; 56():11-25. PubMed ID: 24631941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO
    Choi S; Balamurugan M; Lee KG; Cho KH; Park S; Seo H; Nam KT
    J Phys Chem Lett; 2020 Apr; 11(8):2941-2948. PubMed ID: 32223169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial electrosynthesis of valuable chemicals from the reduction of CO
    Suri D; Aeshala LM; Palai T
    Environ Sci Pollut Res Int; 2024 May; 31(25):36591-36614. PubMed ID: 38772994
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomethane recovery from Egeria densa in a microbial electrolysis cell-assisted anaerobic system: Performance and stability assessment.
    Zhen G; Kobayashi T; Lu X; Kumar G; Xu K
    Chemosphere; 2016 Apr; 149():121-9. PubMed ID: 26855215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of nanoscale zero valent iron (nZVI) concentration on the biochemical conversion of gaseous carbon dioxide (CO
    Dong D; Aleta P; Zhao X; Choi OK; Kim S; Lee JW
    Bioresour Technol; 2019 Mar; 275():314-320. PubMed ID: 30594842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality.
    Deng S; Wang C; Ngo HH; Guo W; You N; Tang H; Yu H; Tang L; Han J
    Bioresour Technol; 2023 May; 376():128906. PubMed ID: 36933575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system.
    Guo Z; Liu W; Yang C; Gao L; Thangavel S; Wang L; He Z; Cai W; Wang A
    Water Res; 2017 Nov; 125():170-179. PubMed ID: 28850887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance.
    LaBarge N; Yilmazel YD; Hong PY; Logan BE
    Bioelectrochemistry; 2017 Feb; 113():20-25. PubMed ID: 27622557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO
    Li X; Angelidaki I; Zhang Y
    Water Res; 2018 Oct; 142():396-404. PubMed ID: 29909219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bimetallic Electrocatalysts for CO
    Zhu W; Tackett BM; Chen JG; Jiao F
    Top Curr Chem (Cham); 2018 Oct; 376(6):41. PubMed ID: 30361990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A review of high temperature co-electrolysis of H
    Zheng Y; Wang J; Yu B; Zhang W; Chen J; Qiao J; Zhang J
    Chem Soc Rev; 2017 Mar; 46(5):1427-1463. PubMed ID: 28165079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.
    Sun R; Zhou A; Jia J; Liang Q; Liu Q; Xing D; Ren N
    Bioresour Technol; 2015 Jan; 175():68-74. PubMed ID: 25459805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Re-evaluating the Contribution of a Fe-Based Current Collector to Bioelectrochemical Methanogenesis: Role and Mechanisms.
    Tian Y; Liang D; Li D; Liu G; Wu J; Xie T; Li J; Feng Y
    Environ Sci Technol; 2023 Dec; 57(51):21757-21766. PubMed ID: 38095196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level.
    Ragab A; Shaw DR; Katuri KP; Saikaly PE
    Sci Rep; 2020 Nov; 10(1):19824. PubMed ID: 33188217
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture.
    Villano M; Aulenta F; Ciucci C; Ferri T; Giuliano A; Majone M
    Bioresour Technol; 2010 May; 101(9):3085-90. PubMed ID: 20074943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.