BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30737337)

  • 61. Homology of aspartyl- and lysyl-tRNA synthetases.
    Gampel A; Tzagoloff A
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6023-7. PubMed ID: 2668951
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Functional analysis of missense DARS2 variants in siblings with leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation.
    Wongkittichote P; Magistrati M; Shimony JS; Smyser CD; Fatemi SA; Fine AS; Bellacchio E; Dallabona C; Shinawi M
    Mol Genet Metab; 2022 Aug; 136(4):260-267. PubMed ID: 35820270
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolites influence control of lysine transfer ribonucleic acid synthetase formation in Escherichia coli K-12.
    Hirshfield IN; Yeh FM; Sawyer LE
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1364-7. PubMed ID: 805427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Clinical exome sequencing identifies a novel TUBB4A mutation in a child with static hypomyelinating leukodystrophy.
    Purnell SM; Bleyl SB; Bonkowsky JL
    Pediatr Neurol; 2014 Jun; 50(6):608-11. PubMed ID: 24742798
    [TBL] [Abstract][Full Text] [Related]  

  • 65. New clinical characteristics and novel pathogenic variants of patients with hereditary leukodystrophies.
    Xie JJ; Ni W; Wei Q; Ma H; Bai G; Shen Y; Wu ZY
    CNS Neurosci Ther; 2020 May; 26(5):567-575. PubMed ID: 31885218
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Retinopathy and optic atrophy: Expanding the phenotypic spectrum of pathogenic variants in the AARS2 gene.
    Peragallo JH; Keller S; van der Knaap MS; Soares BP; Shankar SP
    Ophthalmic Genet; 2018; 39(1):99-102. PubMed ID: 28820624
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adult-onset leukodystrophy with homozygous AARS2 mutation located in the aminoacylation domain.
    Uzun GA
    Neurol India; 2019; 67(3):871-872. PubMed ID: 31347571
    [No Abstract]   [Full Text] [Related]  

  • 68. Mutations in aARS genes revealed by targeted next-generation sequencing in patients with mitochondrial diseases.
    Felhi R; Charif M; Sfaihi L; Mkaouar-Rebai E; Desquiret-Dumas V; Kallel R; Bris C; Goudenège D; Guichet A; Bonneau D; Procaccio V; Reynier P; Amati-Bonneau P; Hachicha M; Fakhfakh F; Lenaers G
    Mol Biol Rep; 2020 May; 47(5):3779-3787. PubMed ID: 32319008
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study.
    Depienne C; Bugiani M; Dupuits C; Galanaud D; Touitou V; Postma N; van Berkel C; Polder E; Tollard E; Darios F; Brice A; de Die-Smulders CE; Vles JS; Vanderver A; Uziel G; Yalcinkaya C; Frints SG; Kalscheuer VM; Klooster J; Kamermans M; Abbink TE; Wolf NI; Sedel F; van der Knaap MS
    Lancet Neurol; 2013 Jul; 12(7):659-68. PubMed ID: 23707145
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aminoacyl-tRNA synthesis in Archaea.
    Ibba M; Celic I; Curnow A; Kim H; Pelaschier J; Tumbula D; Vothknecht U; Woese C; Söll D
    Nucleic Acids Symp Ser; 1997; (37):305-6. PubMed ID: 9586121
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment.
    Igloi GL; Leisinger AK
    RNA Biol; 2014; 11(10):1313-23. PubMed ID: 25603118
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genetic testing of leukodystrophies unraveling extensive heterogeneity in a large cohort and report of five common diseases and 38 novel variants.
    Mahdieh N; Soveizi M; Tavasoli AR; Rabbani A; Ashrafi MR; Kohlschütter A; Rabbani B
    Sci Rep; 2021 Feb; 11(1):3231. PubMed ID: 33547378
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Activation of human mitochondrial lysyl-tRNA synthetase upon maturation of its premitochondrial precursor.
    Dias J; Octobre G; Kobbi L; Comisso M; Flisiak S; Mirande M
    Biochemistry; 2012 Jan; 51(4):909-16. PubMed ID: 22235746
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Expanding the clinical and radiological phenotypes of leukoencephalopathy due to biallelic HMBS mutations.
    Stutterd CA; Kidd A; Florkowski C; Janus E; Fanjul M; Raizis A; Wu TY; Archer J; Leventer RJ; Amor DJ; Lukic V; Bahlo M; Gow P; Lockhart PJ; van der Knaap MS; Delatycki MB
    Am J Med Genet A; 2021 Oct; 185(10):2941-2950. PubMed ID: 34089223
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functional association between three archaeal aminoacyl-tRNA synthetases.
    Praetorius-Ibba M; Hausmann CD; Paras M; Rogers TE; Ibba M
    J Biol Chem; 2007 Feb; 282(6):3680-7. PubMed ID: 17158871
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
    Desogus G; Todone F; Brick P; Onesti S
    Biochemistry; 2000 Jul; 39(29):8418-25. PubMed ID: 10913247
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency.
    Melchionda L; Haack TB; Hardy S; Abbink TE; Fernandez-Vizarra E; Lamantea E; Marchet S; Morandi L; Moggio M; Carrozzo R; Torraco A; Diodato D; Strom TM; Meitinger T; Tekturk P; Yapici Z; Al-Murshedi F; Stevens R; Rodenburg RJ; Lamperti C; Ardissone A; Moroni I; Uziel G; Prokisch H; Taylor RW; Bertini E; van der Knaap MS; Ghezzi D; Zeviani M
    Am J Hum Genet; 2014 Sep; 95(3):315-25. PubMed ID: 25175347
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aminoacylation of Phaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsPro and tRNAsLys by homologous and heterologous enzymes.
    Jeannin G; Burkard G; Weil JH
    Biochim Biophys Acta; 1976 Aug; 442(1):24-31. PubMed ID: 953001
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biallelic mutations in RNF220 cause laminopathies featuring leukodystrophy, ataxia and deafness.
    Sferra A; Fortugno P; Motta M; Aiello C; Petrini S; Ciolfi A; Cipressa F; Moroni I; Leuzzi V; Pieroni L; Marini F; Boespflug Tanguy O; Eymard-Pierre E; Danti FR; Compagnucci C; Zambruno G; Brusco A; Santorelli FM; Chiapparini L; Francalanci P; Loizzo AL; Tartaglia M; Cestra G; Bertini E
    Brain; 2021 Nov; 144(10):3020-3035. PubMed ID: 33964137
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aminoacyl adenylate, a normal intermediate or a dead end in aminoacylation of transfer ribonucleic acid.
    Lagerkvist U; Akesson B; Brändén R
    J Biol Chem; 1977 Feb; 252(3):1002-6. PubMed ID: 320199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.