These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30737421)

  • 1. Task-irrelevant financial losses inhibit the removal of information from working memory.
    Fallon SJ; Dolfen N; Parolo F; Zokaei N; Husain M
    Sci Rep; 2019 Feb; 9(1):1673. PubMed ID: 30737421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature-based and spatial attentional selection in visual working memory.
    Heuer A; Schubö A
    Mem Cognit; 2016 May; 44(4):621-32. PubMed ID: 26754949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ignoring versus updating in working memory reveal differential roles of attention and feature binding.
    Fallon SJ; Mattiesing RM; Dolfen N; Manohar SG; Husain M
    Cortex; 2018 Oct; 107():50-63. PubMed ID: 29402388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal dynamics of attention during encoding versus maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations.
    Myers NE; Walther L; Wallis G; Stokes MG; Nobre AC
    J Cogn Neurosci; 2015 Mar; 27(3):492-508. PubMed ID: 25244118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Value-driven attentional capture is modulated by the contents of working memory: An EEG study.
    Hinault T; Blacker KJ; Gormley M; Anderson BA; Courtney SM
    Cogn Affect Behav Neurosci; 2019 Apr; 19(2):253-267. PubMed ID: 30460482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of information from latent memory stores decreases over time.
    Nouri A; Ester EF
    Cogn Neurosci; 2020 Jan; 11(1-2):101-110. PubMed ID: 31130062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory.
    Bocincova A; Johnson JS
    Cortex; 2019 Feb; 111():196-209. PubMed ID: 30508678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in the use of cues to guide visual working memory.
    Robison MK; Unsworth N
    Atten Percept Psychophys; 2017 Aug; 79(6):1652-1665. PubMed ID: 28547679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focused, unfocused, and defocused information in working memory.
    Rerko L; Oberauer K
    J Exp Psychol Learn Mem Cogn; 2013 Jul; 39(4):1075-96. PubMed ID: 23421511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The short- and long-term fates of memory items retained outside the focus of attention.
    LaRocque JJ; Eichenbaum AS; Starrett MJ; Rose NS; Emrich SM; Postle BR
    Mem Cognit; 2015 Apr; 43(3):453-68. PubMed ID: 25472902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of irrelevant information from working memory: sometimes fast, sometimes slow, and sometimes not at all.
    Oberauer K
    Ann N Y Acad Sci; 2018 Jul; 1424(1):239-255. PubMed ID: 29532484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory correlates of prioritization of emotional stimuli in WM: The interaction between bottom-up and top-down processes.
    Macedo-Pascual J; Hinojosa JA; Poch C
    Biol Psychol; 2019 Jul; 145():167-173. PubMed ID: 31102670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermodal Attention Shifts in Multimodal Working Memory.
    Katus T; Grubert A; Eimer M
    J Cogn Neurosci; 2017 Apr; 29(4):628-636. PubMed ID: 27791432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the influence of a spatially irrelevant working memory load on attentional allocation.
    McDonnell GP; Dodd MD
    J Exp Psychol Hum Percept Perform; 2013 Aug; 39(4):933-40. PubMed ID: 23477696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individuals with low working memory spans show greater interference from irrelevant information because of poor source monitoring, not greater activation.
    Lilienthal L; Rose NS; Tamez E; Myerson J; Hale S
    Mem Cognit; 2015 Apr; 43(3):357-66. PubMed ID: 25921723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG dynamics reveal a dissociation between storage and selective attention within working memory.
    Günseli E; Fahrenfort JJ; van Moorselaar D; Daoultzis KC; Meeter M; Olivers CNL
    Sci Rep; 2019 Sep; 9(1):13499. PubMed ID: 31534150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance.
    Wildegger T; Humphreys G; Nobre AC
    PLoS One; 2016; 11(10):e0164174. PubMed ID: 27706240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory working memory load impairs visual ventral stream processing: toward a unified model of attentional load.
    Klemen J; Büchel C; Bühler M; Menz MM; Rose M
    J Cogn Neurosci; 2010 Mar; 22(3):437-46. PubMed ID: 19302005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference.
    Allen RJ; Ueno T
    Atten Percept Psychophys; 2018 Oct; 80(7):1731-1743. PubMed ID: 29968084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Made you look! Consciously perceived, irrelevant instructional cues can hijack the attentional network.
    Moore KS; Porter CB; Weissman DH
    Neuroimage; 2009 May; 46(1):270-9. PubMed ID: 19457372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.