These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30737491)

  • 1. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans.
    Halder V; Porter CBM; Chavez A; Shapiro RS
    Nat Protoc; 2019 Mar; 14(3):955-975. PubMed ID: 30737491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans.
    Marton T; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32878930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Genetic Changes in Candida albicans Using Transient CRISPR-Cas9 Expression.
    Huang MY; Cravener MC; Mitchell AP
    Curr Protoc; 2021 Jan; 1(1):e19. PubMed ID: 33491919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans.
    Shapiro RS; Chavez A; Porter CBM; Hamblin M; Kaas CS; DiCarlo JE; Zeng G; Xu X; Revtovich AV; Kirienko NV; Wang Y; Church GM; Collins JJ
    Nat Microbiol; 2018 Jan; 3(1):73-82. PubMed ID: 29062088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans.
    Evans BA; Pickerill ES; Vyas VK; Bernstein DA
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Generation of a CRISPR Interference System for Genetic Repression and Essential Gene Analysis in the Fungal Pathogen Candida albicans.
    Wensing L; Shapiro RS
    Methods Mol Biol; 2022; 2377():69-88. PubMed ID: 34709611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing gene function in
    Ramírez-Zavala B; Hoffmann A; Krüger I; Schwanfelder S; Barker KS; Rogers PD; Morschhäuser J
    mSphere; 2024 Jul; 9(7):e0038824. PubMed ID: 38940507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Hypothesis Testing in Candida albicans Clinical Isolates Using a Cloning-Free, Modular, and Recyclable System for CRISPR-Cas9 Mediated Mutant and Revertant Construction.
    Liu J; Vogel AK; Miao J; Carnahan JA; Lowes DJ; Rybak JM; Peters BM
    Microbiol Spectr; 2022 Jun; 10(3):e0263021. PubMed ID: 35612314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 11. CRISPR-Mediated Genome Editing in the Human Fungal Pathogen C. albicans.
    Evans BA; Bernstein DA
    Methods Mol Biol; 2022; 2542():3-12. PubMed ID: 36008653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei.
    Zou G; Zhou Z
    Methods Mol Biol; 2021; 2234():87-98. PubMed ID: 33165782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmid-Based CRISPR-Cas9 Editing in Multiple Candida Species.
    Lombardi L; Butler G
    Methods Mol Biol; 2022; 2542():13-40. PubMed ID: 36008654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 'obligate diploid' Candida albicans forms mating-competent haploids.
    Hickman MA; Zeng G; Forche A; Hirakawa MP; Abbey D; Harrison BD; Wang YM; Su CH; Bennett RJ; Wang Y; Berman J
    Nature; 2013 Feb; 494(7435):55-9. PubMed ID: 23364695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a CRISPR-Based System for Gene Regulation in
    Román E; Coman I; Prieto D; Alonso-Monge R; Pla J
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step targeted gene deletion in Candida albicans haploids.
    Zeng G; Wang YM; Chan FY; Wang Y
    Nat Protoc; 2014 Feb; 9(2):464-73. PubMed ID: 24481273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi.
    Vyas VK; Bushkin GG; Bernstein DA; Getz MA; Sewastianik M; Barrasa MI; Bartel DP; Fink GR
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.