These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 30737545)
1. Global stability properties of a class of renewal epidemic models. Meehan MT; Cocks DG; Müller J; McBryde ES J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545 [TBL] [Abstract][Full Text] [Related]
2. Effect of infection age on an SIS epidemic model on complex networks. Yang J; Chen Y; Xu F J Math Biol; 2016 Nov; 73(5):1227-1249. PubMed ID: 27007281 [TBL] [Abstract][Full Text] [Related]
3. Global stability for epidemic models on multiplex networks. Huang YJ; Juang J; Liang YH; Wang HY J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277 [TBL] [Abstract][Full Text] [Related]
4. The effect of immigration of infectives on disease-free equilibria. Almarashi RM; McCluskey CC J Math Biol; 2019 Aug; 79(3):1015-1028. PubMed ID: 31127328 [TBL] [Abstract][Full Text] [Related]
5. Disease Extinction Versus Persistence in Discrete-Time Epidemic Models. van den Driessche P; Yakubu AA Bull Math Biol; 2019 Nov; 81(11):4412-4446. PubMed ID: 29651670 [TBL] [Abstract][Full Text] [Related]
6. Global stability of an age-structured epidemic model with general Lyapunov functional. Chekroun A; Frioui MN; Kuniya T; Touaoula TM Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431 [TBL] [Abstract][Full Text] [Related]
7. Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Adimy M; Chekroun A; Ferreira CP Math Biosci Eng; 2019 Nov; 17(2):1329-1354. PubMed ID: 32233581 [TBL] [Abstract][Full Text] [Related]
8. Global stability for epidemic model with constant latency and infectious periods. Huang G; Beretta E; Takeuchi Y Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066 [TBL] [Abstract][Full Text] [Related]
9. Global stability of an epidemic model with delay and general nonlinear incidence. McCluskey CC Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711 [TBL] [Abstract][Full Text] [Related]
10. Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks. Chen S; Small M; Tao Y; Fu X Bull Math Biol; 2018 Aug; 80(8):2049-2087. PubMed ID: 29948881 [TBL] [Abstract][Full Text] [Related]
11. A periodic SEIRS epidemic model with a time-dependent latent period. Li F; Zhao XQ J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509 [TBL] [Abstract][Full Text] [Related]
12. SIS and SIR Epidemic Models Under Virtual Dispersal. Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419 [TBL] [Abstract][Full Text] [Related]
13. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis. Kumar A; Goel K; Nilam Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204 [TBL] [Abstract][Full Text] [Related]
14. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Zhao L; Wang ZC; Ruan S J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532 [TBL] [Abstract][Full Text] [Related]
15. Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix. Chen S; Shi J; Shuai Z; Wu Y J Math Biol; 2020 Jun; 80(7):2327-2361. PubMed ID: 32377791 [TBL] [Abstract][Full Text] [Related]
16. Global dynamics of an epidemiological model with age of infection and disease relapse. Xu R J Biol Dyn; 2018 Dec; 12(1):118-145. PubMed ID: 29198167 [TBL] [Abstract][Full Text] [Related]
17. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; Saldaña J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
18. Global stability of multi-group SIR epidemic model with group mixing and human movement. Cui QQ Math Biosci Eng; 2019 Mar; 16(4):1798-1814. PubMed ID: 31137186 [TBL] [Abstract][Full Text] [Related]
19. Basic reproduction ratios for periodic and time-delayed compartmental models with impulses. Bai Z; Zhao XQ J Math Biol; 2020 Mar; 80(4):1095-1117. PubMed ID: 31768629 [TBL] [Abstract][Full Text] [Related]
20. Epidemic models for complex networks with demographics. Jin Z; Sun G; Zhu H Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]