These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 30737625)
1. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system. Zheng Y; Xu G Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625 [TBL] [Abstract][Full Text] [Related]
2. Sinusoidal Signal Assisted Multivariate Empirical Mode Decomposition for Brain-Computer Interfaces. Ge S; Shi YH; Wang RM; Lin P; Gao JF; Sun GP; Iramina K; Yang YK; Leng Y; Wang HX; Zheng WM IEEE J Biomed Health Inform; 2018 Sep; 22(5):1373-1384. PubMed ID: 29990114 [TBL] [Abstract][Full Text] [Related]
3. EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI. Jiao Y; Zheng Q; Qiao D; Lang X; Xie L; Pan Y Biol Cybern; 2024 Apr; 118(1-2):21-37. PubMed ID: 38472417 [TBL] [Abstract][Full Text] [Related]
4. Classification of motor imagery BCI using multivariate empirical mode decomposition. Park C; Looney D; Naveed ur Rehman ; Ahrabian A; Mandic DP IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):10-22. PubMed ID: 23204288 [TBL] [Abstract][Full Text] [Related]
5. Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification. She Q; Gan H; Ma Y; Luo Z; Potter T; Zhang Y Neural Plast; 2016; 2016():7431012. PubMed ID: 27891256 [TBL] [Abstract][Full Text] [Related]
6. A new parameter tuning approach for enhanced motor imagery EEG signal classification. Kumar S; Sharma A Med Biol Eng Comput; 2018 Oct; 56(10):1861-1874. PubMed ID: 29616456 [TBL] [Abstract][Full Text] [Related]
7. Deep Neural Network-Based Empirical Mode Decomposition for Motor Imagery EEG Classification. Yu H; Baek S; Lee J; Sohn I; Hwang B; Park C IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3647-3656. PubMed ID: 39037874 [TBL] [Abstract][Full Text] [Related]
8. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G Med Eng Phys; 2015 Mar; 37(3):280-6. PubMed ID: 25640806 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of Noise-Assisted Multivariate Empirical Mode Decomposition and its application to multichannel EMG signals. Yi Zhang ; Su S; Peng Xu ; Dezhong Yao Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3457-3460. PubMed ID: 29060641 [TBL] [Abstract][Full Text] [Related]
10. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications. Hemakom A; Goverdovsky V; Looney D; Mandic DP Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2065):20150199. PubMed ID: 26953174 [TBL] [Abstract][Full Text] [Related]
11. Using Empirical Mode Decomposition with Spatio-Temporal dynamics to classify single-trial Motor Imagery in BCI. Davies SR; James CJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4631-4. PubMed ID: 25571024 [TBL] [Abstract][Full Text] [Related]
12. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition]. Wang J; Liu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):451-4, 464. PubMed ID: 26211270 [TBL] [Abstract][Full Text] [Related]
13. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method. Taran S; Bajaj V Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991 [TBL] [Abstract][Full Text] [Related]
14. Noise-assisted multivariate empirical mode decomposition for multichannel EMG signals. Zhang Y; Xu P; Li P; Duan K; Wen Y; Yang Q; Zhang T; Yao D Biomed Eng Online; 2017 Aug; 16(1):107. PubMed ID: 28835251 [TBL] [Abstract][Full Text] [Related]
15. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information. Mahmoudi M; Shamsi M Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495 [TBL] [Abstract][Full Text] [Related]
16. Novel use of Empirical Mode Decomposition in single-trial classification of motor imagery for use in brain-computer interfaces. Davies SR; James CJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5610-3. PubMed ID: 24111009 [TBL] [Abstract][Full Text] [Related]
17. A fresh look at functional link neural network for motor imagery-based brain-computer interface. Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940 [TBL] [Abstract][Full Text] [Related]
18. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Kim C; Sun J; Liu D; Wang Q; Paek S Med Biol Eng Comput; 2018 Sep; 56(9):1645-1658. PubMed ID: 29497931 [TBL] [Abstract][Full Text] [Related]
19. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network]. Jin H; Zhang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742 [TBL] [Abstract][Full Text] [Related]
20. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface. Chen YF; Atal K; Xie SQ; Liu Q J Neural Eng; 2017 Aug; 14(4):046028. PubMed ID: 28357991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]