These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30737744)

  • 1. Improving the Production of Cofactor-Containing Proteins: Production of Human Hemoglobin in Yeast.
    Ishchuk OP; Martínez JL; Petranovic D
    Methods Mol Biol; 2019; 1923():243-264. PubMed ID: 30737744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae.
    Martínez JL; Liu L; Petranovic D; Nielsen J
    Biotechnol Bioeng; 2015 Jan; 112(1):181-8. PubMed ID: 25082441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae.
    Liu L; Martínez JL; Liu Z; Petranovic D; Nielsen J
    Metab Eng; 2014 Jan; 21():9-16. PubMed ID: 24188961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of human hemoglobin in yeast by engineering hemoglobin degradation.
    Ishchuk OP; Frost AT; Muñiz-Paredes F; Matsumoto S; Laforge N; Eriksson NL; Martínez JL; Petranovic D
    Metab Eng; 2021 Jul; 66():259-267. PubMed ID: 33984513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae.
    Wagenbach M; O'Rourke K; Vitez L; Wieczorek A; Hoffman S; Durfee S; Tedesco J; Stetler G
    Biotechnology (N Y); 1991 Jan; 9(1):57-61. PubMed ID: 1367213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus.
    Lara FA; Lins U; Bechara GH; Oliveira PL
    J Exp Biol; 2005 Aug; 208(Pt 16):3093-101. PubMed ID: 16081607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the protein secretory pathway of
    Huang M; Wang G; Qin J; Petranovic D; Nielsen J
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11025-E11032. PubMed ID: 30397111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Microbial Synthesis of Hemoglobin.
    Zhao X; Zhou J; Du G; Chen J
    Trends Biotechnol; 2021 Mar; 39(3):286-297. PubMed ID: 32912649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production.
    Wang G; Huang M; Nielsen J
    Curr Opin Biotechnol; 2017 Dec; 48():77-84. PubMed ID: 28410475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.
    Eichenberger M; Hansson A; Fischer D; Dürr L; Naesby M
    FEMS Yeast Res; 2018 Jun; 18(4):. PubMed ID: 29771352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins.
    Xue J; Zhou J; Li J; Du G; Chen J; Wang M; Zhao X
    Bioresour Technol; 2023 Feb; 370():128556. PubMed ID: 36586429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Heme-iron in the human body].
    Balla J; Balla G; Lakatos B; Jeney V; Szentmihályi K
    Orv Hetil; 2007 Sep; 148(36):1699-706. PubMed ID: 17766221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional properties of human hemoglobins synthesized from recombinant mutant beta-globins.
    Doyle ML; Lew G; De Young A; Kwiatkowski L; Wierzba A; Noble RW; Ackers GK
    Biochemistry; 1992 Sep; 31(36):8629-39. PubMed ID: 1390647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae.
    Carlsen S; Ajikumar PK; Formenti LR; Zhou K; Phon TH; Nielsen ML; Lantz AE; Kielland-Brandt MC; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5753-69. PubMed ID: 23636690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double-bond reductase.
    Lehka BJ; Eichenberger M; Bjørn-Yoshimoto WE; Vanegas KG; Buijs N; Jensen NB; Dyekjær JD; Jenssen H; Simon E; Naesby M
    FEMS Yeast Res; 2017 Jan; 17(1):. PubMed ID: 28073929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of recombinant hemoglobins for use in transfusion fluids.
    Fronticelli C; Koehler RC
    Crit Care Clin; 2009 Apr; 25(2):357-71, Table of Contents. PubMed ID: 19341913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing stability and expression of recombinant human hemoglobin in E. coli: Progress in the development of a recombinant HBOC source.
    Graves PE; Henderson DP; Horstman MJ; Solomon BJ; Olson JS
    Biochim Biophys Acta; 2008 Oct; 1784(10):1471-9. PubMed ID: 18489914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of α-Hb chain binding to its chaperone AHSP depends on heme coordination and redox state.
    Kiger L; Vasseur C; Domingues-Hamdi E; Truan G; Marden MC; Baudin-Creuza V
    Biochim Biophys Acta; 2014 Jan; 1840(1):277-87. PubMed ID: 24060751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.