These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 30737807)
1. Root volatiles in plant-plant interactions I: High root sesquiterpene release is associated with increased germination and growth of plant neighbours. Gfeller V; Huber M; Förster C; Huang W; Köllner TG; Erb M Plant Cell Environ; 2019 Jun; 42(6):1950-1963. PubMed ID: 30737807 [TBL] [Abstract][Full Text] [Related]
2. Root volatiles in plant-plant interactions II: Root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants. Huang W; Gfeller V; Erb M Plant Cell Environ; 2019 Jun; 42(6):1964-1973. PubMed ID: 30754075 [TBL] [Abstract][Full Text] [Related]
3. Duration of emission of volatile organic compounds from mechanically damaged plant leaves. Smith L; Beck JJ J Plant Physiol; 2015 Sep; 188():19-28. PubMed ID: 26398629 [TBL] [Abstract][Full Text] [Related]
4. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Schmelz EA; Alborn HT; Tumlinson JH Planta; 2001 Dec; 214(2):171-9. PubMed ID: 11800380 [TBL] [Abstract][Full Text] [Related]
5. Phytotoxic compounds from roots of Centaurea diffusa Lam. Quintana N; El Kassis EG; Stermitz FR; Vivanco JM Plant Signal Behav; 2009 Jan; 4(1):9-14. PubMed ID: 19568334 [TBL] [Abstract][Full Text] [Related]
6. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. Jin J; Kim MJ; Dhandapani S; Tjhang JG; Yin JL; Wong L; Sarojam R; Chua NH; Jang IC J Exp Bot; 2015 Jul; 66(13):3959-75. PubMed ID: 25956881 [TBL] [Abstract][Full Text] [Related]
7. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Robert CA; Erb M; Hiltpold I; Hibbard BE; Gaillard MD; Bilat J; Degenhardt J; Cambet-Petit-Jean X; Turlings TC; Zwahlen C Plant Biotechnol J; 2013 Jun; 11(5):628-39. PubMed ID: 23425633 [TBL] [Abstract][Full Text] [Related]
8. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Kegge W; Ninkovic V; Glinwood R; Welschen RA; Voesenek LA; Pierik R Ann Bot; 2015 May; 115(6):961-70. PubMed ID: 25851141 [TBL] [Abstract][Full Text] [Related]
10. Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Abel C; Clauss M; Schaub A; Gershenzon J; Tholl D Planta; 2009 Jun; 230(1):1-11. PubMed ID: 19322583 [TBL] [Abstract][Full Text] [Related]
11. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. Piesik D; Lemńczyk G; Skoczek A; Lamparski R; Bocianowski J; Kotwica K; Delaney KJ J Plant Physiol; 2011 Sep; 168(13):1534-42. PubMed ID: 21492953 [TBL] [Abstract][Full Text] [Related]
12. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. Minerdi D; Bossi S; Maffei ME; Gullino ML; Garibaldi A FEMS Microbiol Ecol; 2011 May; 76(2):342-51. PubMed ID: 21255049 [TBL] [Abstract][Full Text] [Related]
13. Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Hiltpold I; Erb M; Robert CA; Turlings TC Plant Cell Environ; 2011 Aug; 34(8):1267-75. PubMed ID: 21477121 [TBL] [Abstract][Full Text] [Related]
14. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots. Yahyaa M; Tholl D; Cormier G; Jensen R; Simon PW; Ibdah M J Agric Food Chem; 2015 May; 63(19):4870-8. PubMed ID: 25924989 [TBL] [Abstract][Full Text] [Related]
15. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. Maja MM; Kasurinen A; Holopainen T; Julkunen-Tiitto R; Holopainen JK Sci Total Environ; 2016 Mar; 547():39-47. PubMed ID: 26780130 [TBL] [Abstract][Full Text] [Related]
16. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. Chang X; Wang F; Fang Q; Chen F; Yao H; Gatehouse AMR; Ye G Plant Cell Environ; 2021 Aug; 44(8):2700-2715. PubMed ID: 33866575 [TBL] [Abstract][Full Text] [Related]
17. (±)-catechin, a root exudate of the invasive centaurea stoebe lam. (Spotted knapweed) exhibits bacteriostatic activity against multiple soil bacterial populations. Pollock JL; Kogan LA; Thorpe AS; Holben WE J Chem Ecol; 2011 Sep; 37(9):1044-53. PubMed ID: 21882071 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Huang X; Xiao Y; Köllner TG; Zhang W; Wu J; Wu J; Guo Y; Zhang Y Plant Physiol Biochem; 2013 Dec; 73():302-8. PubMed ID: 24184450 [TBL] [Abstract][Full Text] [Related]
19. Barley (Hordeum distichon L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (E)-non-2-enal and (E,Z)-nona-2,6-dienal after mechanical injury. Delory BM; Delaplace P; du Jardin P; Fauconnier ML Plant Physiol Biochem; 2016 Jul; 104():134-45. PubMed ID: 27031425 [TBL] [Abstract][Full Text] [Related]
20. Mycorrhizae Alter Constitutive and Herbivore-Induced Volatile Emissions by Milkweeds. Meier AR; Hunter MD J Chem Ecol; 2019 Jul; 45(7):610-625. PubMed ID: 31281942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]