These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 30738152)

  • 61. Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework.
    Bussy S; Veil R; Looten V; Burgun A; Gaïffas S; Guilloux A; Ranque B; Jannot AS
    BMC Med Res Methodol; 2019 Mar; 19(1):50. PubMed ID: 30841867
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Comprehensive Machine Learning Analytics for Heart Failure.
    Guo CY; Wu MY; Cheng HM
    Int J Environ Res Public Health; 2021 May; 18(9):. PubMed ID: 34066464
    [No Abstract]   [Full Text] [Related]  

  • 63. A machine learning approach for the prediction of overall deceased donor organ yield.
    Marrero WJ; Lavieri MS; Guikema SD; Hutton DW; Parikh ND
    Surgery; 2021 Nov; 170(5):1561-1567. PubMed ID: 34183178
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation.
    Yoon J; Zame WR; Banerjee A; Cadeiras M; Alaa AM; van der Schaar M
    PLoS One; 2018; 13(3):e0194985. PubMed ID: 29590219
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Predicting factors for survival of breast cancer patients using machine learning techniques.
    Ganggayah MD; Taib NA; Har YC; Lio P; Dhillon SK
    BMC Med Inform Decis Mak; 2019 Mar; 19(1):48. PubMed ID: 30902088
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods.
    Yahya N; Ebert MA; Bulsara M; House MJ; Kennedy A; Joseph DJ; Denham JW
    Med Phys; 2016 May; 43(5):2040. PubMed ID: 27147316
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection.
    Takahashi Y; Ueki M; Yamada M; Tamiya G; Motoike IN; Saigusa D; Sakurai M; Nagami F; Ogishima S; Koshiba S; Kinoshita K; Yamamoto M; Tomita H
    Transl Psychiatry; 2020 May; 10(1):157. PubMed ID: 32427830
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Machine learning-based prediction of health outcomes in pediatric organ transplantation recipients.
    Killian MO; Payrovnaziri SN; Gupta D; Desai D; He Z
    JAMIA Open; 2021 Jan; 4(1):ooab008. PubMed ID: 34075353
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Impact of donor age on survival after heart transplantation: an analysis of the United Network for Organ Sharing (UNOS) registry.
    Weber DJ; Wang IW; Gracon AS; Hellman YM; Hormuth DA; Wozniak TC; Hashmi ZA
    J Card Surg; 2014 Sep; 29(5):723-8. PubMed ID: 25041692
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prediction of lung cancer patient survival via supervised machine learning classification techniques.
    Lynch CM; Abdollahi B; Fuqua JD; de Carlo AR; Bartholomai JA; Balgemann RN; van Berkel VH; Frieboes HB
    Int J Med Inform; 2017 Dec; 108():1-8. PubMed ID: 29132615
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of the 2006 U.S. thoracic organ allocation change: analysis of local impact on organ procurement and heart transplantation.
    Nativi JN; Kfoury AG; Myrick C; Peters M; Renlund D; Gilbert EM; Bader F; Singhal AK; Everitt M; Fisher P; Bull DA; Selzman C; Stehlik J
    J Heart Lung Transplant; 2010 Mar; 29(3):235-9. PubMed ID: 19782588
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predicting Surgical Complications in Patients Undergoing Elective Adult Spinal Deformity Procedures Using Machine Learning.
    Kim JS; Arvind V; Oermann EK; Kaji D; Ranson W; Ukogu C; Hussain AK; Caridi J; Cho SK
    Spine Deform; 2018; 6(6):762-770. PubMed ID: 30348356
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prediction of Donor Heart Acceptance for Transplant and Its Clinical Implications: Results From The Donor Heart Study.
    Wayda B; Weng Y; Zhang S; Luikart H; Pearson T; Nieto J; Nicely B; Geraghty PJ; Belcher J; Nguyen J; Neidlinger N; Groat T; Malinoski D; Zaroff JG; Khush KK
    Circ Heart Fail; 2024 Oct; 17(10):e011360. PubMed ID: 39308397
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures.
    Merrill RK; Ferrandino RM; Hoffman R; Shaffer GW; Ndu A
    J Foot Ankle Surg; 2019 May; 58(3):410-416. PubMed ID: 30803914
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Does recipient work status pre-transplant affect post-heart transplant survival? A United Network for Organ Sharing database review.
    Ravi Y; Lella SK; Copeland LA; Zolfaghari K; Grady K; Emani S; Sai-Sudhakar CB
    J Heart Lung Transplant; 2018 May; 37(5):604-610. PubMed ID: 29482932
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study.
    Zheng D; Hao X; Khan M; Wang L; Li F; Xiang N; Kang F; Hamalainen T; Cong F; Song K; Qiao C
    Front Cardiovasc Med; 2022; 9():959649. PubMed ID: 36312231
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predicting crop root concentration factors of organic contaminants with machine learning models.
    Gao F; Shen Y; Brett Sallach J; Li H; Zhang W; Li Y; Liu C
    J Hazard Mater; 2022 Feb; 424(Pt B):127437. PubMed ID: 34678561
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Defining and Predicting Pain Volatility in Users of the Manage My Pain App: Analysis Using Data Mining and Machine Learning Methods.
    Rahman QA; Janmohamed T; Pirbaglou M; Clarke H; Ritvo P; Heffernan JM; Katz J
    J Med Internet Res; 2018 Nov; 20(11):e12001. PubMed ID: 30442636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.