BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30738256)

  • 1. Bringing value to the chemical industry from capture, storage and use of CO
    Aldaco R; Butnar I; Margallo M; Laso J; Rumayor M; Dominguez-Ramos A; Irabien A; Dodds PE
    Sci Total Environ; 2019 May; 663():738-753. PubMed ID: 30738256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation.
    Varling AS; Christensen TH; Bisinella V
    Waste Manag; 2023 Feb; 157():168-179. PubMed ID: 36549176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Economics of carbon dioxide capture and utilization-a supply and demand perspective.
    Naims H
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22226-22241. PubMed ID: 27189450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration.
    Christensen TH; Bisinella V
    Waste Manag; 2021 May; 126():754-770. PubMed ID: 33887697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change mitigation potential of carbon capture and utilization in the chemical industry.
    Kätelhön A; Meys R; Deutz S; Suh S; Bardow A
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11187-11194. PubMed ID: 31085651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change impacts of bioenergy technologies: A comparative consequential LCA of sustainable fuels production with CCUS.
    Krogh A; Junginger M; Shen L; Grue J; Pedersen TH
    Sci Total Environ; 2024 Aug; 940():173660. PubMed ID: 38834100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The environmental and economic sustainability of carbon capture and storage.
    Hardisty PE; Sivapalan M; Brooks P
    Int J Environ Res Public Health; 2011 May; 8(5):1460-77. PubMed ID: 21655130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Laboratory to Industrial Scale: A Prospective LCA for Electrochemical Reduction of CO
    Thonemann N; Schulte A
    Environ Sci Technol; 2019 Nov; 53(21):12320-12329. PubMed ID: 31603653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.
    Hertwich EG; Gibon T; Bouman EA; Arvesen A; Suh S; Heath GA; Bergesen JD; Ramirez A; Vega MI; Shi L
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6277-82. PubMed ID: 25288741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of CO2 capture and utilization: a tutorial review.
    von der Assen N; Voll P; Peters M; Bardow A
    Chem Soc Rev; 2014 Dec; 43(23):7982-94. PubMed ID: 24441866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration.
    Bisinella V; Hulgaard T; Riber C; Damgaard A; Christensen TH
    Waste Manag; 2021 Jun; 128():99-113. PubMed ID: 33975140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Relative Climate Impact of Carbon Utilization for Concrete, Chemical, and Mineral Production.
    Ravikumar D; Keoleian GA; Miller SA; Sick V
    Environ Sci Technol; 2021 Sep; 55(17):12019-12031. PubMed ID: 34423630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations.
    Pikaar I; de Vrieze J; Rabaey K; Herrero M; Smith P; Verstraete W
    Sci Total Environ; 2018 Dec; 644():1525-1530. PubMed ID: 30743865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments.
    Haszeldine RS; Flude S; Johnson G; Scott V
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.
    Humphries Choptiany JM; Pelot R
    Risk Anal; 2014 Sep; 34(9):1720-37. PubMed ID: 24772997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].
    Chen WY; Wu ZX; Wang WZ
    Huan Jing Ke Xue; 2007 Jun; 28(6):1178-82. PubMed ID: 17674718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Sustainable Oxalic Acid from CO
    Schuler E; Demetriou M; Shiju NR; Gruter GM
    ChemSusChem; 2021 Sep; 14(18):3636-3664. PubMed ID: 34324259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.
    Morales Mora MA; Vergara CP; Leiva MA; Martínez Delgadillo SA; Rosa-Domínguez ER
    J Environ Manage; 2016 Dec; 183(Pt 3):998-1008. PubMed ID: 27692511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.