These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30738296)

  • 1. Detecting list-colored graph motifs in biological networks using branch-and-bound strategy.
    Huang Y; Zhong C
    Comput Biol Med; 2019 Apr; 107():1-9. PubMed ID: 30738296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RANGI: a fast list-colored graph motif finding algorithm.
    Rudi AG; Shahrivari S; Jalili S; Moghadam Kashani ZR
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):504-13. PubMed ID: 23929873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.
    Kouhsar M; Razaghi-Moghadam Z; Mousavian Z; Masoudi-Nejad A
    Comput Biol Med; 2016 Sep; 76():154-9. PubMed ID: 27454243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameterized algorithmics for finding connected motifs in biological networks.
    Betzler N; van Bevern R; Fellows MR; Komusiewicz C; Niedermeier R
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1296-308. PubMed ID: 21282862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource Cut, a New Bounding Procedure to Algorithms for Enumerating Tree-Like Chemical Graphs.
    Nishiyama Y; Shurbevski A; Nagamochi H; Akutsu T
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):77-90. PubMed ID: 29994050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding Path Motifs in Large Temporal Graphs Using Algebraic Fingerprints.
    Thejaswi S; Gionis A; Lauri J
    Big Data; 2020 Oct; 8(5):335-362. PubMed ID: 33017173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colored Network Motif Analysis by Dynamic Programming Approach: An Application in Host Pathogen Interaction Network.
    Biswas S; Ray S; Bandyopadhyay S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):550-561. PubMed ID: 31217126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information content of colored motifs in complex networks.
    Adami C; Qian J; Rupp M; Hintze A
    Artif Life; 2011; 17(4):375-90. PubMed ID: 21762026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motif discovery in biological network using expansion tree.
    Patra S; Mohapatra A
    J Bioinform Comput Biol; 2018 Dec; 16(6):1850024. PubMed ID: 30415600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SuperNoder: a tool to discover over-represented modular structures in networks.
    Dessì D; Cirrone J; Recupero DR; Shasha D
    BMC Bioinformatics; 2018 Sep; 19(1):318. PubMed ID: 30200901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path matching and graph matching in biological networks.
    Yang Q; Sze SH
    J Comput Biol; 2007; 14(1):56-67. PubMed ID: 17381346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering large conserved functional components in global network alignment by graph matching.
    Zhu Y; Li Y; Liu J; Qin L; Yu JX
    BMC Genomics; 2018 Sep; 19(Suppl 7):670. PubMed ID: 30255780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphle: Interactive exploration of large, dense graphs.
    Huttenhower C; Mehmood SO; Troyanskaya OG
    BMC Bioinformatics; 2009 Dec; 10():417. PubMed ID: 20003429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SING: subgraph search in non-homogeneous graphs.
    Di Natale R; Ferro A; Giugno R; Mongiovì M; Pulvirenti A; Shasha D
    BMC Bioinformatics; 2010 Feb; 11():96. PubMed ID: 20170516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensible method for updating motif instances in an increased biological network.
    Kim WY; Kurmar S
    Methods; 2015 Jul; 83():71-9. PubMed ID: 25869675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting motifs in dynamic networks.
    Mukherjee K; Hasan MM; Boucher C; Kahveci T
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):6. PubMed ID: 29671392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the discovery of group-consistent graph substructure patterns from brain networks.
    Iakovidou ND; Dimitriadis SI; Laskaris NA; Tsichlas K; Manolopoulos Y
    J Neurosci Methods; 2013 Mar; 213(2):204-13. PubMed ID: 23274947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kavosh: a new algorithm for finding network motifs.
    Kashani ZR; Ahrabian H; Elahi E; Nowzari-Dalini A; Ansari ES; Asadi S; Mohammadi S; Schreiber F; Masoudi-Nejad A
    BMC Bioinformatics; 2009 Oct; 10():318. PubMed ID: 19799800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algorithms for effective querying of compound graph-based pathway databases.
    Dogrusoz U; Cetintas A; Demir E; Babur O
    BMC Bioinformatics; 2009 Nov; 10():376. PubMed ID: 19917102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.