BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30738308)

  • 1. Consistency of carbon nanopore characteristics derived from adsorption of simple gases and 2D-NLDFT models. Advantages of using adsorption isotherms of oxygen (O
    Jagiello J; Kenvin J
    J Colloid Interface Sci; 2019 Apr; 542():151-158. PubMed ID: 30738308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NLDFT adsorption models for zeolite porosity analysis with particular focus on ultra-microporous zeolites using O
    Jagiello J; Kenvin J
    J Colloid Interface Sci; 2022 Nov; 625():178-186. PubMed ID: 35716613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D-NLDFT adsorption models for porous oxides with corrugated cylindrical pores.
    Jagiello J; Jaroniec M
    J Colloid Interface Sci; 2018 Dec; 532():588-597. PubMed ID: 30114648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NLDFT Pore Size Distribution in Amorphous Microporous Materials.
    Kupgan G; Liyana-Arachchi TP; Colina CM
    Langmuir; 2017 Oct; 33(42):11138-11145. PubMed ID: 28829600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N(2) and CO(2) adsorption isotherms? Simulation results for a realistic carbon model.
    Furmaniak S; Terzyk AP; Gauden PA; Harris PJ; Kowalczyk P
    J Phys Condens Matter; 2009 Aug; 21(31):315005. PubMed ID: 21828590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K.
    Jagiello J; Ansón A; Martínez MT
    J Phys Chem B; 2006 Mar; 110(10):4531-4. PubMed ID: 16526679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of high-pressure adsorption equilibrium of supercritical gases using density functional theory.
    Nguyen TX; Bhatia SK; Nicholson D
    Langmuir; 2005 Mar; 21(7):3187-97. PubMed ID: 15780003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Analysis of Hierarchical Porous Carbons Using a Dual-Shape 2D-NLDFT Model with an Adjustable Slit-Cylinder Pore Shape Boundary.
    Jagiello J; Castro-Gutiérrez J; Canevesi RLS; Celzard A; Fierro V
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49472-49481. PubMed ID: 34632762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?
    Terzyk AP; Furmaniak S; Harris PJ; Gauden PA; Włoch J; Kowalczyk P; Rychlicki G
    Phys Chem Chem Phys; 2007 Nov; 9(44):5919-27. PubMed ID: 17989800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the heat of adsorption of water, acetonitrile, and n-hexane in porous carbon with oxygen functional groups.
    Urita C; Urita K; Araki T; Horio K; Yoshida M; Moriguchi I
    J Colloid Interface Sci; 2019 Sep; 552():412-417. PubMed ID: 31151018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption.
    Neimark AV; Ravikovitch PI; Grün M; Schüth F; Unger KK
    J Colloid Interface Sci; 1998 Nov; 207(1):159-169. PubMed ID: 9778403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation of Microporous Carbons during N2, Ar, and CO2 Adsorption: Insight from the Density Functional Theory.
    Balzer C; Cimino RT; Gor GY; Neimark AV; Reichenauer G
    Langmuir; 2016 Aug; 32(32):8265-74. PubMed ID: 27420036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory.
    Cimino RT; Kowalczyk P; Ravikovitch PI; Neimark AV
    Langmuir; 2017 Feb; 33(8):1769-1779. PubMed ID: 28135415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representative Pores: An Efficient Method to Characterize Activated Carbons.
    de Oliveira JCA; Galdino AL; Gonçalves DV; Silvino PFG; Cavalcante CL; Bastos-Neto M; Azevedo DCS; Lucena SMP
    Front Chem; 2020; 8():595230. PubMed ID: 33634073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic restriction of simple gases in porous carbons: transition-state theory study.
    Nguyen TX; Bhatia SK
    Langmuir; 2008 Jan; 24(1):146-54. PubMed ID: 18044941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the reliability of the characterization of the porous structure of activated carbons based on incomplete nitrogen adsorption isotherms.
    Kwiatkowski M; Hameed BH
    J Mol Model; 2017 Aug; 23(8):238. PubMed ID: 28735499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of activated carbon surface heterogeneity by argon and nitrogen low-pressure quasi-equilibrium volumetry.
    Garnier C; Gorner T; Razafitianamaharavo A; Villiéras F
    Langmuir; 2005 Mar; 21(7):2838-46. PubMed ID: 15779956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of adsorption of gases on graphite surfaces accounting for the solid-fluid nonadditivity correction.
    Ustinov EA; Kukushkina J; Betz WR
    Langmuir; 2011 Jan; 27(1):209-14. PubMed ID: 21117675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium adsorption in cylindrical mesopores: a modified Broekhoff and de Boer theory versus density functional theory.
    Ustinov EA; Do DD; Jaroniec M
    J Phys Chem B; 2005 Feb; 109(5):1947-58. PubMed ID: 16851179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the pore size distribution of activated carbons from adsorption data of different adsorbates by various methods.
    Gauden PA; Terzyk AP; Rychlicki G; Kowalczyk P; Cwiertnia MS; Garbacz JK
    J Colloid Interface Sci; 2004 May; 273(1):39-63. PubMed ID: 15051432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.