These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30738320)

  • 61. [Influence of catalytic ozonation process on suppressing bromate formation potential in drinking water treatment].
    Han BJ; Ma J; Zhang T; Han HD; Shen LP; Zhang LZ
    Huan Jing Ke Xue; 2008 Mar; 29(3):665-70. PubMed ID: 18649525
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 3 D Co
    Samal A; Swain S; Satpati B; Das DP; Mishra BK
    ChemSusChem; 2016 Nov; 9(22):3150-3160. PubMed ID: 27863056
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Epitaxial growth of crystalline polyaniline on reduced graphene oxide.
    Majumdar D; Baskey M; Saha SK
    Macromol Rapid Commun; 2011 Aug; 32(16):1277-83. PubMed ID: 21714028
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Reducing bromate formation by catalyzed ozonation].
    He R; Lu JF; Ma J; Zhang T; Chen WP
    Huan Jing Ke Xue; 2008 Jan; 29(1):99-103. PubMed ID: 18441924
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin.
    Yan Y; Sun S; Song Y; Yan X; Guan W; Liu X; Shi W
    J Hazard Mater; 2013 Apr; 250-251():106-14. PubMed ID: 23434486
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrasensitive room temperature NH3 sensor based on a graphene-polyaniline hybrid loaded on PET thin film.
    Bai S; Zhao Y; Sun J; Tian Y; Luo R; Li D; Chen A
    Chem Commun (Camb); 2015 May; 51(35):7524-7. PubMed ID: 25845668
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel photocatalytic microreactor bundle that does not require an electric power source.
    Katayama K; Takeda Y; Kuwabara K; Kuwahara S
    Chem Commun (Camb); 2012 Jul; 48(59):7368-70. PubMed ID: 22713971
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application.
    Chen M; Shen X; Liu P; Wei Y; Meng Y; Zheng G; Diao G
    Carbohydr Polym; 2015 Mar; 119():26-34. PubMed ID: 25563941
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B
    Geleta GS; Zhao Z; Wang Z
    Analyst; 2018 Mar; 143(7):1644-1649. PubMed ID: 29509194
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Green synthesis of biphasic TiO₂-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity.
    Sher Shah MS; Park AR; Zhang K; Park JH; Yoo PJ
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3893-901. PubMed ID: 22788800
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles.
    Zhao Y; Zhao D; Chen C; Wang X
    J Colloid Interface Sci; 2013 Sep; 405():211-7. PubMed ID: 23746434
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In situ preparation of highly stable polyaniline/W
    Zhao X; Huang S; Liu Y; Liu Q; Zhang Y
    J Hazard Mater; 2018 Jul; 353():466-475. PubMed ID: 29705660
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: A novel composite for enhanced glucose oxidase bioelectrode performance.
    Kang Z; Jiao K; Xu X; Peng R; Jiao S; Hu Z
    Biosens Bioelectron; 2017 Oct; 96():367-372. PubMed ID: 28535471
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.
    Sharma A; Lee BK
    J Environ Manage; 2016 Jan; 165():1-10. PubMed ID: 26386660
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms.
    Xiao Q; Yu S; Li L; Wang T; Liao X; Ye Y
    J Hazard Mater; 2017 Feb; 324(Pt B):230-240. PubMed ID: 28340995
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water.
    Shi P; Su R; Zhu S; Zhu M; Li D; Xu S
    J Hazard Mater; 2012 Aug; 229-230():331-9. PubMed ID: 22738772
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O.
    Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC
    Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.
    Ahmad A; Gu X; Li L; Lv S; Xu Y; Guo X
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17876-85. PubMed ID: 26162447
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The synergetic effect of MoS₂ and graphene on Ag₃PO₄ for its ultra-enhanced photocatalytic activity in phenol degradation under visible light.
    Peng WC; Wang X; Li XY
    Nanoscale; 2014 Jul; 6(14):8311-7. PubMed ID: 24933179
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Graphene oxide as an effective catalyst for wet air oxidation of phenol.
    Yang S; Cui Y; Sun Y; Yang H
    J Hazard Mater; 2014 Sep; 280():55-62. PubMed ID: 25127389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.