These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30738329)
1. Tyrosinase and α-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives. Sari S; Barut B; Özel A; Kuruüzüm-Uz A; Şöhretoğlu D Bioorg Chem; 2019 May; 86():296-304. PubMed ID: 30738329 [TBL] [Abstract][Full Text] [Related]
2. Phytochemical profile, enzyme inhibition activity and molecular docking analysis of Saber FR; Ashour RM; El-Halawany AM; Mahomoodally MF; Ak G; Zengin G; Mahrous EA J Enzyme Inhib Med Chem; 2021 Dec; 36(1):618-626. PubMed ID: 33557639 [No Abstract] [Full Text] [Related]
3. Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Sari S; Barut B; Özel A; Şöhretoğlu D Bioorg Chem; 2019 Nov; 92():103259. PubMed ID: 31518762 [TBL] [Abstract][Full Text] [Related]
4. Tyrosinase inhibitory components from the seeds of Cassia tora. Lee GY; Cho BO; Shin JY; Jang SI; Cho IS; Kim HY; Park JS; Cho CW; Kang JS; Kim JH; Kim YH Arch Pharm Res; 2018 May; 41(5):490-496. PubMed ID: 29721815 [TBL] [Abstract][Full Text] [Related]
5. Tetra-aryl cyclobutane and stilbenes from the rhizomes of Rheum undulatum and their α-glucosidase inhibitory activity: Biological evaluation, kinetic analysis, and molecular docking simulation. Ha MT; Kim M; Kim CS; Park SE; Kim JA; Woo MH; Choi JS; Min BS Bioorg Med Chem Lett; 2020 Apr; 30(8):127049. PubMed ID: 32111435 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Song YM; Ha YM; Kim JA; Chung KW; Uehara Y; Lee KJ; Chun P; Byun Y; Chung HY; Moon HR Bioorg Med Chem Lett; 2012 Dec; 22(24):7451-5. PubMed ID: 23142612 [TBL] [Abstract][Full Text] [Related]
7. HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species. Revoltella S; Rainer B; Waltenberger B; Pagitz K; Schwaiger S; Stuppner H Chem Biodivers; 2019 Mar; 16(3):e1800541. PubMed ID: 30556957 [TBL] [Abstract][Full Text] [Related]
8. Potent inhibitors of tyrosinase activity and melanin biosynthesis from Rheum officinale. Iida K; Hase K; Shimomura K; Sudo S; Kadota S; Namba T Planta Med; 1995 Oct; 61(5):425-8. PubMed ID: 7480203 [TBL] [Abstract][Full Text] [Related]
9. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites. Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors. Channar PA; Saeed A; Larik FA; Rafiq M; Ashraf Z; Jabeen F; Fattah TA Bioorg Med Chem; 2017 Nov; 25(21):5929-5938. PubMed ID: 28988751 [TBL] [Abstract][Full Text] [Related]
12. The tyrosinase inhibitory effects of isoxazolone derivatives with a (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold. Kim SJ; Yang J; Lee S; Park C; Kang D; Akter J; Ullah S; Kim YJ; Chun P; Moon HR Bioorg Med Chem; 2018 Aug; 26(14):3882-3889. PubMed ID: 29907470 [TBL] [Abstract][Full Text] [Related]
13. Tyrosinase inhibition constituents from the roots of Morus australis. Zheng ZP; Tan HY; Wang M Fitoterapia; 2012 Sep; 83(6):1008-13. PubMed ID: 22698714 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Saeed A; Mahesar PA; Channar PA; Abbas Q; Larik FA; Hassan M; Raza H; Seo SY Bioorg Chem; 2017 Oct; 74():187-196. PubMed ID: 28837887 [TBL] [Abstract][Full Text] [Related]
15. Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Szyszyl using biological activity, molecular docking and gene expression analysis. Lall N; Mogapi E; de Canha MN; Crampton B; Nqephe M; Hussein AA; Kumar V Bioorg Med Chem; 2016 Nov; 24(22):5953-5959. PubMed ID: 27720556 [TBL] [Abstract][Full Text] [Related]
16. Unveiling the tyrosinase inhibitory potential of phenolics from Centaurium spicatum: Bridging in silico and in vitro perspectives. Alruhaimi RS; Mahmoud AM; Elbagory I; Ahmeda AF; El-Bassuony AA; Lamsabhi AM; Kamel EM Bioorg Chem; 2024 Jun; 147():107397. PubMed ID: 38691905 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. Larik FA; Saeed A; Channar PA; Muqadar U; Abbas Q; Hassan M; Seo SY; Bolte M Eur J Med Chem; 2017 Dec; 141():273-281. PubMed ID: 29040952 [TBL] [Abstract][Full Text] [Related]
18. Multi-targeted potential of Pittosporum senacia Putt.: HPLC-ESI-MS Mahomoodally MF; Picot-Allain C; Hosenally M; Ugurlu A; Mollica A; Stefanucci A; Llorent-Martínez EJ; Baloglu MC; Zengin G Comput Biol Chem; 2019 Dec; 83():107114. PubMed ID: 31493741 [TBL] [Abstract][Full Text] [Related]
19. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. Yang L; Yang YL; Dong WH; Li W; Wang P; Cao X; Yuan JZ; Chen HQ; Mei WL; Dai HF J Enzyme Inhib Med Chem; 2019 Dec; 34(1):853-862. PubMed ID: 31010356 [TBL] [Abstract][Full Text] [Related]
20. Anti-tyrosinase, anti-cholinesterase and cytotoxic activities of extracts and phytochemicals from the Tunisian Citharexylum spinosum L.: Molecular docking and SAR analysis. Saidi I; Nimbarte VD; Schwalbe H; Waffo-Téguo P; Harrath AH; Mansour L; Alwasel S; Ben Jannet H Bioorg Chem; 2020 Sep; 102():104093. PubMed ID: 32717693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]