These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30738722)
21. Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. Chalmers RM; Ferguson C; Cacciò S; Gasser RB; Abs EL-Osta YG; Heijnen L; Xiao L; Elwin K; Hadfield S; Sinclair M; Stevens M Int J Parasitol; 2005 Apr; 35(4):397-410. PubMed ID: 15777916 [TBL] [Abstract][Full Text] [Related]
22. Cross sectional study of prevalence, genetic diversity and zoonotic potential of Cryptosporidium parvum cycling in New Zealand dairy farms. Al Mawly J; Grinberg A; Velathanthiri N; French N Parasit Vectors; 2015 Apr; 8():240. PubMed ID: 25896433 [TBL] [Abstract][Full Text] [Related]
23. Distribution of Cryptosporidium parvum subgenotypes in pre-weaned calves in Germany. Göhring F; Lendner M; Daugschies A Vet Parasitol Reg Stud Reports; 2022 Nov; 36():100806. PubMed ID: 36436893 [TBL] [Abstract][Full Text] [Related]
24. Prevalence and multilocus genotyping of Cryptosporidium andersoni in dairy cattle and He cattle in Xinjiang, China. Qi M; Wang R; Jing B; Jian F; Ning C; Zhang L Infect Genet Evol; 2016 Oct; 44():313-317. PubMed ID: 27448954 [TBL] [Abstract][Full Text] [Related]
25. New Cryptosporidium parvum subtypes of IIa subfamily in dairy calves from Brazil. do Couto MC; Lima Mde F; do Bomfim TC Acta Trop; 2014 Feb; 130():117-22. PubMed ID: 24239750 [TBL] [Abstract][Full Text] [Related]
26. Optimization of a fragment size analysis tool for identification of Cryptosporidium species and Gp60 alleles infecting domestic ruminants. Ramo A; Quílez J; Del Cacho E; Sánchez-Acedo C Vet Parasitol; 2014 Oct; 205(3-4):466-71. PubMed ID: 25224787 [TBL] [Abstract][Full Text] [Related]
27. Subtypes of Cryptosporidium parvum in humans and disease risk. Hunter PR; Hadfield SJ; Wilkinson D; Lake IR; Harrison FC; Chalmers RM Emerg Infect Dis; 2007 Jan; 13(1):82-8. PubMed ID: 17370519 [TBL] [Abstract][Full Text] [Related]
28. Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Cai M; Guo Y; Pan B; Li N; Wang X; Tang C; Feng Y; Xiao L Vet Parasitol; 2017 Jul; 241():14-19. PubMed ID: 28579024 [TBL] [Abstract][Full Text] [Related]
29. Multilocus sequence typing and population genetic structure of Cryptosporidium cuniculus in rabbits in Heilongjiang Province, China. Yang Z; Yang F; Wang J; Cao J; Zhao W; Gong B; Yan J; Zhang W; Liu A; Shen Y Infect Genet Evol; 2018 Oct; 64():249-253. PubMed ID: 29981901 [TBL] [Abstract][Full Text] [Related]
30. Infections with multiple Cryptosporidium species and new genetic variants in young dairy calves on a farm located within a drinking water catchment area in New Zealand. Shrestha RD; Grinberg A; Dukkipati VS; Pleydell EJ; Prattley DJ; French NP Vet Parasitol; 2014 May; 202(3-4):287-91. PubMed ID: 24780161 [TBL] [Abstract][Full Text] [Related]
31. Emergence of distinct genotypes of Cryptosporidium parvum in structured host populations. Tanriverdi S; Markovics A; Arslan MO; Itik A; Shkap V; Widmer G Appl Environ Microbiol; 2006 Apr; 72(4):2507-13. PubMed ID: 16597950 [TBL] [Abstract][Full Text] [Related]
32. Population genetics of Cryptosporidium meleagridis in humans and birds: evidence for cross-species transmission. Wang Y; Yang W; Cama V; Wang L; Cabrera L; Ortega Y; Bern C; Feng Y; Gilman R; Xiao L Int J Parasitol; 2014 Jul; 44(8):515-21. PubMed ID: 24727090 [TBL] [Abstract][Full Text] [Related]
33. Panmictic structure of the Cryptosporidium parvum population in Irish calves: influence of prevalence and host movement. De Waele V; Van den Broeck F; Huyse T; McGrath G; Higgins I; Speybroeck N; Berzano M; Raleigh P; Mulcahy GM; Murphy TM Appl Environ Microbiol; 2013 Apr; 79(8):2534-41. PubMed ID: 23396342 [TBL] [Abstract][Full Text] [Related]
34. Evidence of host-associated populations of Cryptosporidium parvum in Italy. Drumo R; Widmer G; Morrison LJ; Tait A; Grelloni V; D'Avino N; Pozio E; Cacciò SM Appl Environ Microbiol; 2012 May; 78(10):3523-9. PubMed ID: 22389374 [TBL] [Abstract][Full Text] [Related]
35. Emergence of novel subtypes of Cryptosporidium parvum in calves in Poland. Kaupke A; Rzeżutka A Parasitol Res; 2015 Dec; 114(12):4709-16. PubMed ID: 26358098 [TBL] [Abstract][Full Text] [Related]
36. Multilocus sequence typing of Yadav P; Mirdha BR; Makharia GK; Chaudhry R Indian J Med Res; 2017 Jan; 145(1):102-111. PubMed ID: 28574022 [TBL] [Abstract][Full Text] [Related]
37. Temporal and spatial dynamics of Cryptosporidium parvum infection on dairy farms in the New York City Watershed: a cluster analysis based on crude and Bayesian risk estimates. Szonyi B; Wade SE; Mohammed HO Int J Health Geogr; 2010 Jun; 9():31. PubMed ID: 20565805 [TBL] [Abstract][Full Text] [Related]
38. Distribution of Cryptosporidium parvum gp60 subtypes in calf herds of Saxony, Germany. Holzhausen I; Lendner M; Göhring F; Steinhöfel I; Daugschies A Parasitol Res; 2019 May; 118(5):1549-1558. PubMed ID: 30790038 [TBL] [Abstract][Full Text] [Related]
39. Cryptosporidium parvum and gp60 genotype prevalence in dairy calves worldwide: a systematic review and meta-analysis. Chen Y; Huang J; Qin H; Wang L; Li J; Zhang L Acta Trop; 2023 Apr; 240():106843. PubMed ID: 36738819 [TBL] [Abstract][Full Text] [Related]
40. Epidemiology and public health significance of Cryptosporidium isolated from cattle, buffaloes, and humans in Egypt. Ibrahim MA; Abdel-Ghany AE; Abdel-Latef GK; Abdel-Aziz SA; Aboelhadid SM Parasitol Res; 2016 Jun; 115(6):2439-48. PubMed ID: 27044415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]