These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30738730)

  • 21. GlnR Negatively Regulates Glutamate-Dependent Acid Resistance in Lactobacillus brevis.
    Gong L; Ren C; Xu Y
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.
    Wu Q; Shah NP
    Food Microbiol; 2018 Feb; 69():151-158. PubMed ID: 28941896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH.
    Shi F; Xie Y; Jiang J; Wang N; Li Y; Wang X
    Enzyme Microb Technol; 2014; 61-62():35-43. PubMed ID: 24910334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. gadA gene locus in Lactobacillus brevis NCL912 and its expression during fed-batch fermentation.
    Li H; Li W; Liu X; Cao Y
    FEMS Microbiol Lett; 2013 Dec; 349(2):108-16. PubMed ID: 24164637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening of gamma-aminobutyric acid-producing lactic acid bacteria and the characteristic of glutamate decarboxylase from Levilactobacillus brevis F109-MD3 isolated from kimchi.
    Liu W; Li H; Liu L; Ko K; Kim I
    J Appl Microbiol; 2022 Mar; 132(3):1967-1977. PubMed ID: 34570423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome analysis and optimization of γ-aminobutyric acid (GABA) production by lactic acid bacteria from plant materials.
    Phuengjayaem S; Kuncharoen N; Booncharoen A; Ongpipattanakul B; Tanasupawat S
    J Gen Appl Microbiol; 2021 Oct; 67(4):150-161. PubMed ID: 34092710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and characterization of glutamate decarboxylase from Lactobacillus brevis HYE1 isolated from kimchi.
    Lim HS; Seo DH; Cha IT; Lee H; Nam YD; Seo MJ
    World J Microbiol Biotechnol; 2018 Mar; 34(3):44. PubMed ID: 29500614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100.
    Kim JY; Lee MY; Ji GE; Lee YS; Hwang KT
    Int J Food Microbiol; 2009 Mar; 130(1):12-6. PubMed ID: 19167126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptomics reveal different metabolic strategies for acid resistance and gamma-aminobutyric acid (GABA) production in select Levilactobacillus brevis strains.
    Banerjee S; Poore M; Gerdes S; Nedveck D; Lauridsen L; Kristensen HT; Jensen HM; Byrd PM; Ouwehand AC; Patterson E; Morovic W
    Microb Cell Fact; 2021 Sep; 20(1):173. PubMed ID: 34488774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine protected cells from H
    Xiao T; Zhang D; Tun HM; Shah NP
    World J Microbiol Biotechnol; 2022 Aug; 38(11):185. PubMed ID: 35972565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk.
    Wu Q; Law YS; Shah NP
    Sci Rep; 2015 Aug; 5():12885. PubMed ID: 26245488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation.
    Cataldo PG; Villegas JM; Savoy de Giori G; Saavedra L; Hebert EM
    Int J Food Microbiol; 2020 Nov; 333():108792. PubMed ID: 32707524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter.
    Wu Q; Shah NP
    Crit Rev Food Sci Nutr; 2017 Nov; 57(17):3661-3672. PubMed ID: 26980301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-genome analysis, evaluation and regulation of in vitro and in vivo GABA production from Levilactobacillus brevis YSJ3.
    Liu H; Liu D; Zhang C; Niu H; Xin X; Yi H; Liu D; Zhang J
    Int J Food Microbiol; 2024 Aug; 421():110787. PubMed ID: 38878704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.
    Binh TT; Ju WT; Jung WJ; Park RD
    Biotechnol Lett; 2014 Jan; 36(1):93-8. PubMed ID: 24078124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the Production of Biogenic Amines and Gamma-Aminobutyric Acid in the Soybean Pastes Fermented by Aspergillus oryzae and Lactobacillus brevis.
    Kim NY; Ji GE
    J Microbiol Biotechnol; 2015 Apr; 25(4):464-8. PubMed ID: 25341471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.
    Hasegawa M; Yamane D; Funato K; Yoshida A; Sambongi Y
    J Biosci Bioeng; 2018 Mar; 125(3):316-319. PubMed ID: 29089240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-cycling fermentation for 1,3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain.
    Vivek N; Aswathi TV; Sven PR; Pandey A; Binod P
    J Biotechnol; 2017 Oct; 259():110-119. PubMed ID: 28760443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.
    Jang EK; Kim NY; Ahn HJ; Ji GE
    J Microbiol Biotechnol; 2015 Aug; 25(8):1315-20. PubMed ID: 25876604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synbiotic Fermentation of Undaria pinnatifida and Lactobacillus brevis to Produce Prebiotics and Probiotics.
    Kim NY; Kim JM; Son JY; Ra CH
    Appl Biochem Biotechnol; 2023 Oct; 195(10):6321-6333. PubMed ID: 36862333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.