These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30739025)

  • 1. Adsorption of gas-phase elemental mercury by sulphonitrided steel sheet. Effect of hydrogen treatment.
    Kocemba I; Szynkowska MI; Maćkiewicz E; Góralski J; Rogowski J; Pietrasik R; Kula P; Kaczmarek Ł; Jóźwik K
    J Hazard Mater; 2019 Apr; 368():722-731. PubMed ID: 30739025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent removal of elemental mercury and SO
    Balasundaram K; Sharma M
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15518-15528. PubMed ID: 29569202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.
    Musmarra D; Karatza D; Lancia A; Prisciandaro M; Mazziotti di Celso G
    J Air Waste Manag Assoc; 2016 Jul; 66(7):698-706. PubMed ID: 27043167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.
    Li H; Zhu L; Wang J; Li L; Shih K
    Environ Sci Technol; 2016 Sep; 50(17):9551-7. PubMed ID: 27508312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous sulfur dioxide and mercury removal during low-rank coal combustion by natural zeolite.
    Gani A; Wattimena Y; Erdiwansyah ; Mahidin ; Muhibbuddin ; Riza M
    Heliyon; 2021 May; 7(5):e07052. PubMed ID: 34036205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of O
    Shen F; Liu J; Wu D; Dong Y; Liu F; Huang H
    J Hazard Mater; 2019 Mar; 366():321-328. PubMed ID: 30530024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CO and CO
    Zhou Q; Zhou J; Cao H; Xu X
    ACS Omega; 2021 Feb; 6(4):2916-2924. PubMed ID: 33553910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.
    Jing H; Wang X; Wang WN; Biswas P
    J Air Waste Manag Assoc; 2015 Apr; 65(4):455-65. PubMed ID: 25947215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.
    Scala F; Clack HL
    J Hazard Mater; 2008 Apr; 152(2):616-23. PubMed ID: 17703878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of regenerable sorbents for mercury capture in gas phase.
    Lopez-Anton MA; Fernández-Miranda N; Martínez-Tarazona MR
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24495-24503. PubMed ID: 27604126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic investigation of elemental mercury adsorption over silver-modified vanadium silicate: A DFT study.
    Zhou Z; Cao T; Liu X; Xu J; Deng L; Li C; Liu J; Xu M
    J Hazard Mater; 2021 Feb; 404(Pt A):124108. PubMed ID: 33032090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recyclable Naturally Derived Magnetic Pyrrhotite for Elemental Mercury Recovery from Flue Gas.
    Liao Y; Chen D; Zou S; Xiong S; Xiao X; Dang H; Chen T; Yang S
    Environ Sci Technol; 2016 Oct; 50(19):10562-10569. PubMed ID: 27603113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a sorbent trap system to gas-phase elemental and oxidized mercury analysis.
    Zhang Z; Eom Y; Lee MJ; Lee TG
    Chemosphere; 2016 Jul; 154():293-299. PubMed ID: 27060637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.
    Clack HL
    Environ Sci Technol; 2009 Mar; 43(5):1460-6. PubMed ID: 19350920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.
    Bisson TM; MacLean LC; Hu Y; Xu Z
    Environ Sci Technol; 2012 Nov; 46(21):12186-93. PubMed ID: 23020596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.
    Li H; Zhu L; Wang J; Li L; Lee PH; Feng Y; Shih K
    Environ Sci Technol; 2017 Aug; 51(15):8530-8536. PubMed ID: 28662579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.