These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30739026)
21. Power densities and microbial communities of brewery wastewater-fed microbial fuel cells according to the initial substrates. Yu J; Park Y; Kim B; Lee T Bioprocess Biosyst Eng; 2015 Jan; 38(1):85-92. PubMed ID: 24973903 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of microbial fuel cell (MFC) for bioelectricity generation and pollutants removal from sugar beet processing wastewater (SBPW). Rahman A; Borhan MS; Rahman S Water Sci Technol; 2018 Jan; 77(1-2):387-397. PubMed ID: 29377823 [TBL] [Abstract][Full Text] [Related]
23. Enrichment and characterization of a bilge microbial consortium with oil in water-emulsions breaking ability for oily wastewater treatment. Corti-Monzón G; Nisenbaum M; Villegas-Plazas M; Junca H; Murialdo S Biodegradation; 2020 Apr; 31(1-2):57-72. PubMed ID: 32193752 [TBL] [Abstract][Full Text] [Related]
24. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation. Rincón GJ; La Motta EJ J Environ Manage; 2014 Nov; 144():42-50. PubMed ID: 24908614 [TBL] [Abstract][Full Text] [Related]
25. Desorption of two organophosphorous pesticides from soil with wastewater and surfactant solutions. Hernández-Soriano MC; Mingorance MD; Peña A J Environ Manage; 2012 Mar; 95 Suppl():S223-7. PubMed ID: 21035940 [TBL] [Abstract][Full Text] [Related]
26. Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment. Rahmani AR; Navidjouy N; Rahimnejad M; Alizadeh S; Samarghandi MR; Nematollahi D Environ Technol; 2022 Jan; 43(1):1-9. PubMed ID: 32431240 [TBL] [Abstract][Full Text] [Related]
27. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Min B; Logan BE Environ Sci Technol; 2004 Nov; 38(21):5809-14. PubMed ID: 15575304 [TBL] [Abstract][Full Text] [Related]
28. Micellar-enhanced ultrafiltration of copper ions using sodium dodecyl sulfate and its mixture with Brij 35, Tween 80 and Triton X-100. Zhao B; Li R; Zhong J; Zhang L Water Sci Technol; 2013; 67(10):2154-9. PubMed ID: 23676382 [TBL] [Abstract][Full Text] [Related]
29. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater. Wang X; Yuan C; Shao C; Zhuang S; Ye J; Li B Environ Res; 2020 Mar; 182():109011. PubMed ID: 31837548 [TBL] [Abstract][Full Text] [Related]
30. Bioelectricity generation by natural microflora of septic tank wastewater (STWW) and biodegradation of persistent petrogenic pollutants by basidiomycetes fungi: An integrated microbial fuel cell system. Thulasinathan B; Jayabalan T; Sethupathi M; Kim W; Muniyasamy S; Sengottuvelan N; Nainamohamed S; Ponnuchamy K; Alagarsamy A J Hazard Mater; 2021 Jun; 412():125228. PubMed ID: 33516103 [TBL] [Abstract][Full Text] [Related]
31. Surfactant-induced mobilisation of trace metals from estuarine sediment: implications for contaminant bioaccessibility and remediation. Singh A; Turner A Environ Pollut; 2009 Feb; 157(2):646-53. PubMed ID: 18926610 [TBL] [Abstract][Full Text] [Related]
32. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH. Li XM; Cheng KY; Wong JW Bioresour Technol; 2013 Dec; 149():452-8. PubMed ID: 24140849 [TBL] [Abstract][Full Text] [Related]
33. [Comparison of power generation in microbial fuel cells of two different structures]. Luo HP; Liu GL; Zhang RD; Jin S Huan Jing Ke Xue; 2009 Feb; 30(2):621-4. PubMed ID: 19402526 [TBL] [Abstract][Full Text] [Related]
34. Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene. Yang JG; Liu X; Long T; Yu G; Peng S; Zheng L J Environ Sci (China); 2003 Nov; 15(6):859-62. PubMed ID: 14758909 [TBL] [Abstract][Full Text] [Related]
35. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Liu H; Ramnarayanan R; Logan BE Environ Sci Technol; 2004 Apr; 38(7):2281-5. PubMed ID: 15112835 [TBL] [Abstract][Full Text] [Related]
36. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells. Seo Y; Kang H; Chang S; Lee YY; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):13-24. PubMed ID: 29035628 [TBL] [Abstract][Full Text] [Related]
37. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Munoz-Cupa C; Hu Y; Xu C; Bassi A Sci Total Environ; 2021 Feb; 754():142429. PubMed ID: 33254845 [TBL] [Abstract][Full Text] [Related]
39. The effect of surfactants on the ozonation of o-cresol in aqueous solutions in a rotating packed contactor. Ku Y; Ji YS; Chen HW; Chou YC; Chang CY Environ Technol; 2010 Feb; 31(2):139-44. PubMed ID: 20391798 [TBL] [Abstract][Full Text] [Related]
40. Physicochemical and antibacterial properties of surfactant mixtures with quaternized chitosan microgels. Richardson KE; Xue Z; Huang Y; Seo Y; Lapitsky Y Carbohydr Polym; 2013 Apr; 93(2):709-17. PubMed ID: 23499115 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]