These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 30739365)
1. Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Brezonik PL; Bouchard RW; Finlay JC; Griffin CG; Olmanson LG; Anderson JP; Arnold WA; Hozalski R Ecol Appl; 2019 Apr; 29(3):e01871. PubMed ID: 30739365 [TBL] [Abstract][Full Text] [Related]
2. Iron influence on dissolved color in lakes of the Upper Great Lakes States. Brezonik PL; Finlay JC; Griffin CG; Arnold WA; Boardman EH; Germolus N; Hozalski RM; Olmanson LG PLoS One; 2019; 14(2):e0211979. PubMed ID: 30759145 [TBL] [Abstract][Full Text] [Related]
3. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Zhang Y; Zhou Y; Shi K; Qin B; Yao X; Zhang Y Water Res; 2018 Mar; 131():255-263. PubMed ID: 29304379 [TBL] [Abstract][Full Text] [Related]
4. Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable Minnesota lakes using Landsat 8 imagery. Olmanson LG; Page BP; Finlay JC; Brezonik PL; Bauer ME; Griffin CG; Hozalski RM Sci Total Environ; 2020 Jul; 724():138141. PubMed ID: 32247976 [TBL] [Abstract][Full Text] [Related]
5. Limitations on using CDOM as a proxy for DOC in temperate lakes. Griffin CG; Finlay JC; Brezonik PL; Olmanson L; Hozalski RM Water Res; 2018 Nov; 144():719-727. PubMed ID: 30099300 [TBL] [Abstract][Full Text] [Related]
6. Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. Zou W; Zhu G; Cai Y; Vilmi A; Xu H; Zhu M; Gong Z; Zhang Y; Qin B J Environ Manage; 2020 Apr; 260():109923. PubMed ID: 32090794 [TBL] [Abstract][Full Text] [Related]
7. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes. Bachmann RW; Hoyer MV; Croteau AC; Canfield DE Environ Monit Assess; 2017 May; 189(5):206. PubMed ID: 28374189 [TBL] [Abstract][Full Text] [Related]
8. Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales. Fergus CE; Finley AO; Soranno PA; Wagner T PLoS One; 2016; 11(10):e0164592. PubMed ID: 27736962 [TBL] [Abstract][Full Text] [Related]
9. Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake. Bilgin A Environ Monit Assess; 2020 Nov; 192(12):794. PubMed ID: 33244660 [TBL] [Abstract][Full Text] [Related]
10. The benefits of restoring urban lakes in the tropics. Jamwal P; Carvalho L; Bhattacharyya S; Muttepawar P Environ Monit Assess; 2023 Oct; 195(11):1294. PubMed ID: 37821724 [TBL] [Abstract][Full Text] [Related]
11. Dissolved organic carbon and its potential predictors in eutrophic lakes. Toming K; Kutser T; Tuvikene L; Viik M; Nõges T Water Res; 2016 Oct; 102():32-40. PubMed ID: 27318445 [TBL] [Abstract][Full Text] [Related]
12. Long-Term Water Quality Patterns in an Estuarine Reservoir and the Functional Changes in Relations of Trophic State Variables Depending on the Construction of Serial Weirs in Upstream Reaches. Jargal N; Lee HS; An KG Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886296 [TBL] [Abstract][Full Text] [Related]
13. Determining reference conditions for TN, TP, SD and Chl-a in eastern plain ecoregion lakes, China. Huo S; Xi B; Su J; Zan F; Chen Q; Ji D; Ma C J Environ Sci (China); 2013 May; 25(5):1001-6. PubMed ID: 24218831 [TBL] [Abstract][Full Text] [Related]
14. Relative impact of environmental variables on the lake trophic state highlights the complexity of eutrophication controls. Zawiska I; Jasiewicz J; Rzodkiewicz M; Woszczyk M J Environ Manage; 2023 Nov; 345():118679. PubMed ID: 37536128 [TBL] [Abstract][Full Text] [Related]
15. Monsoon-induced response of algal chlorophyll to trophic state, light availability, and morphometry in 293 temperate reservoirs. Jargal N; Lee EH; An KG J Environ Manage; 2023 Jul; 337():117737. PubMed ID: 36933538 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Chen Y; Arnold WA; Griffin CG; Olmanson LG; Brezonik PL; Hozalski RM Water Res; 2019 Nov; 165():115001. PubMed ID: 31470281 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Two Water Color Algorithms: Implications for the Remote Sensing of Water Bodies with Moderate to High CDOM or Chlorophyll Levels. Burket MO; Olmanson LG; Brezonik PL Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772113 [TBL] [Abstract][Full Text] [Related]
18. Aerobic anoxygenic phototrophs are highly abundant in hypertrophic and polyhumic waters. Szabó-Tugyi N; Vörös L; V-Balogh K; Botta-Dukát Z; Bernát G; Schmera D; Somogyi B FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31291460 [TBL] [Abstract][Full Text] [Related]
19. [CDOM Optical Characteristics and Related Environmental Factors of High-turbidity Waters on the Loess Plateau]. Liang XW; Shao TT; Wang T Huan Jing Ke Xue; 2020 Mar; 41(3):1217-1226. PubMed ID: 32608623 [TBL] [Abstract][Full Text] [Related]
20. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]