These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30739529)

  • 1. Proteomic characterization of the arsenic response locus in S. cerevisiae.
    West KL; Byrum SD; Mackintosh SG; Edmondson RD; Taverna SD; Tackett AJ
    Epigenetics; 2019 Feb; 14(2):130-145. PubMed ID: 30739529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p.
    Wysocki R; Fortier PK; Maciaszczyk E; Thorsen M; Leduc A; Odhagen A; Owsianik G; Ulaszewski S; Ramotar D; Tamás MJ
    Mol Biol Cell; 2004 May; 15(5):2049-60. PubMed ID: 14978214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate.
    Menezes RA; Pimentel C; Silva AR; Amaral C; Merhej J; Devaux F; Rodrigues-Pousada C
    Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):472-481. PubMed ID: 28188921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8.
    Kumar NV; Yang J; Pillai JK; Rawat S; Solano C; Kumar A; Grøtli M; Stemmler TL; Rosen BP; Tamás MJ
    Mol Cell Biol; 2015 Dec; 36(6):913-22. PubMed ID: 26711267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.
    Ansari SA; Paul E; Sommer S; Lieleg C; He Q; Daly AZ; Rode KA; Barber WT; Ellis LC; LaPorta E; Orzechowski AM; Taylor E; Reeb T; Wong J; Korber P; Morse RH
    J Biol Chem; 2014 May; 289(21):14981-95. PubMed ID: 24727477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2.
    Sanz AB; García R; Rodríguez-Peña JM; Nombela C; Arroyo J
    Nucleic Acids Res; 2016 Sep; 44(15):7159-72. PubMed ID: 27112564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CRISPR-based approach for proteomic analysis of a single genomic locus.
    Waldrip ZJ; Byrum SD; Storey AJ; Gao J; Byrd AK; Mackintosh SG; Wahls WP; Taverna SD; Raney KD; Tackett AJ
    Epigenetics; 2014 Sep; 9(9):1207-11. PubMed ID: 25147920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-based direct threat sensing by the stress-activated protein kinase Hog1.
    Guerra-Moreno A; Prado MA; Ang J; Schnell HM; Micoogullari Y; Paulo JA; Finley D; Gygi SP; Hanna J
    Sci Signal; 2019 Nov; 12(609):. PubMed ID: 31772124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.
    Ilina Y; Sloma E; Maciaszczyk-Dziubinska E; Novotny M; Thorsen M; Wysocki R; Tamás MJ
    Biochem J; 2008 Nov; 415(3):467-75. PubMed ID: 18593383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters.
    Sikorski TW; Joo YJ; Ficarro SB; Askenazi M; Buratowski S; Marto JA
    J Biol Chem; 2012 Oct; 287(42):35397-35408. PubMed ID: 22902623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway.
    Di Y; Tamás MJ
    J Cell Sci; 2007 Jan; 120(Pt 2):256-64. PubMed ID: 17200139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress.
    Proft M; Struhl K
    Mol Cell; 2002 Jun; 9(6):1307-17. PubMed ID: 12086627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter.
    Cosma MP; Tanaka T; Nasmyth K
    Cell; 1999 Apr; 97(3):299-311. PubMed ID: 10319811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that Swi/Snf directly represses transcription in S. cerevisiae.
    Martens JA; Winston F
    Genes Dev; 2002 Sep; 16(17):2231-6. PubMed ID: 12208846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATP-dependent SWI/SNF and RSC chromatin remodelers cooperatively induce unfolded protein response genes during endoplasmic reticulum stress.
    Sahu RK; Singh S; Tomar RS
    Biochim Biophys Acta Gene Regul Mech; 2021; 1864(11-12):194748. PubMed ID: 34454103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene.
    Fleming AB; Pennings S
    Nucleic Acids Res; 2007; 35(16):5520-31. PubMed ID: 17704134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for transcriptional repressors in targeting the yeast Swi/Snf complex.
    Dimova D; Nackerdien Z; Furgeson S; Eguchi S; Osley MA
    Mol Cell; 1999 Jul; 4(1):75-83. PubMed ID: 10445029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating phenotypic and expression profiles to map arsenic-response networks.
    Haugen AC; Kelley R; Collins JB; Tucker CJ; Deng C; Afshari CA; Brown JM; Ideker T; Van Houten B
    Genome Biol; 2004; 5(12):R95. PubMed ID: 15575969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.