These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30739550)

  • 1. CDER Experience With Juvenile Animal Studies for CNS Drugs.
    Fisher JE; Ravindran A; Elayan I
    Int J Toxicol; 2019; 38(2):88-95. PubMed ID: 30739550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Juvenile Animal Studies for Pediatric CNS-Targeted Compounds: A Regulatory Perspective.
    van der Laan JW; van Malderen K; de Jager N; Duarte D; Egger GF; Lavergne F; Roque CG; Vieira I; Wiesner L; Carleer J
    Int J Toxicol; 2019; 38(6):456-475. PubMed ID: 31662008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Topics in Postnatal Behavioral Testing.
    Henck JW; Elayan I; Vorhees C; Fisher JE; Morford LL
    Int J Toxicol; 2016 Sep; 35(5):499-520. PubMed ID: 27381384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of learning, memory, and attention in developmental neurotoxicity regulatory studies: synthesis, commentary, and recommendations.
    Vorhees CV; Makris SL
    Neurotoxicol Teratol; 2015; 52(Pt A):109-15. PubMed ID: 26526903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real life juvenile toxicity case studies: the good, the bad and the ugly.
    De Schaepdrijver L; Rouan MC; Raoof A; Bailey GP; De Zwart L; Monbaliu J; Coogan TP; Lammens L; Coussement W
    Reprod Toxicol; 2008 Sep; 26(1):54-5. PubMed ID: 18514481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Juvenile animal studies and pediatric drug development: a European regulatory perspective.
    Carleer J; Karres J
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):254-60. PubMed ID: 21638754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of learning, memory and attention in developmental neurotoxicity regulatory studies: Introduction.
    Makris SL; Vorhees CV
    Neurotoxicol Teratol; 2015; 52(Pt A):62-7. PubMed ID: 26049062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Juvenile animal studies and pediatric drug development retrospective review: use in regulatory decisions and labeling.
    Tassinari MS; Benson K; Elayan I; Espandiari P; Davis-Bruno K
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):261-5. PubMed ID: 21594977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value of juvenile animal studies.
    Leconte I; Bailey G; Davis-Bruno K; Hew KW; Kim J; Silva Lima B; Liminga U; Moffit J; De Schaepdrijver L; Schmitt G; Tassinari M; Thompson K; Hurtt M
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):292-303. PubMed ID: 22623020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental neurotoxicity study of styrene by inhalation in Crl-CD rats.
    Cruzan G; Faber WD; Johnson KA; Roberts LS; Hellwig J; Maurissen J; Beck MJ; Radovsky A; Stump DG
    Birth Defects Res B Dev Reprod Toxicol; 2005 Jun; 74(3):221-32. PubMed ID: 15880801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The minipig as nonrodent species in toxicology--where are we now?
    Ganderup NC; Harvey W; Mortensen JT; Harrouk W
    Int J Toxicol; 2012; 31(6):507-28. PubMed ID: 23134714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juvenile animal toxicity study designs to support pediatric drug development.
    Cappon GD; Bailey GP; Buschmann J; Feuston MH; Fisher JE; Hew KW; Hoberman AM; Ooshima Y; Stump DG; Hurtt ME
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):463-9. PubMed ID: 20025047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluations of organ system development in juvenile toxicology testing.
    Robinson K
    Reprod Toxicol; 2008 Sep; 26(1):51-3. PubMed ID: 18595655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of the dog as non-rodent test species in the safety testing schedule associated with the registration of crop and plant protection products (pesticides): present status.
    Box RJ; Spielmann H
    Arch Toxicol; 2005 Nov; 79(11):615-26. PubMed ID: 15940470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The value of information generated by long-term toxicity studies in the dog for the nonclinical safety assessment of pharmaceutical compounds.
    Parkinson C; Lumley CE; Walker SR
    Fundam Appl Toxicol; 1995 Apr; 25(1):115-23. PubMed ID: 7601320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolites in safety testing.
    Robison TW; Jacobs A
    Bioanalysis; 2009 Oct; 1(7):1193-200. PubMed ID: 21083045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for detecting long-term CNS dysfunction after prenatal exposure to neurotoxins.
    Vorhees CV
    Drug Chem Toxicol; 1997 Nov; 20(4):387-99. PubMed ID: 9433666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of juvenile animal studies "What have we learned from preclinical juvenile toxicity studies? II".
    Bailey GP; Mariƫn D
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):273-91. PubMed ID: 22623019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.
    Swedberg MD
    J Pharmacol Toxicol Methods; 2016; 81():295-305. PubMed ID: 27235786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.