These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30740137)

  • 1. Evaluating maize phenotype dynamics under drought stress using terrestrial lidar.
    Su Y; Wu F; Ao Z; Jin S; Qin F; Liu B; Pang S; Liu L; Guo Q
    Plant Methods; 2019; 15():11. PubMed ID: 30740137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level.
    Jin S; Su Y; Song S; Xu K; Hu T; Yang Q; Wu F; Xu G; Ma Q; Guan H; Pang S; Li Y; Guo Q
    Plant Methods; 2020; 16():69. PubMed ID: 32435271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Maize Vegetative Growth and Drought Adaptability Using Image-Based Phenotyping Under Controlled Conditions.
    Dodig D; Božinović S; Nikolić A; Zorić M; Vančetović J; Ignjatović-Micić D; Delić N; Weigelt-Fischer K; Altmann T; Junker A
    Front Plant Sci; 2021; 12():652116. PubMed ID: 34046050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.).
    Kaya C; Şenbayram M; Akram NA; Ashraf M; Alyemeni MN; Ahmad P
    Sci Rep; 2020 Apr; 10(1):6432. PubMed ID: 32286357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].
    Ji RP; Che YS; Zhu YN; Liang T; Feng R; Yu WY; Zhang YS
    Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3021-6. PubMed ID: 23431785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic Expression of a Heterologous Glutaredoxin Enhances Drought Tolerance and Grain Yield in Field Grown Maize.
    Tamang TM; Sprague SA; Kakeshpour T; Liu S; White FF; Park S
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves.
    Hu Y; Li WC; Xu YQ; Li GJ; Liao Y; Fu FL
    J Appl Genet; 2009; 50(3):213-23. PubMed ID: 19638676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms.
    Jin S; Su Y; Gao S; Wu F; Hu T; Liu J; Li W; Wang D; Chen S; Jiang Y; Pang S; Guo Q
    Front Plant Sci; 2018; 9():866. PubMed ID: 29988466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance.
    Badu-Apraku B; Talabi AO; Fakorede MAB; Fasanmade Y; Gedil M; Magorokosho C; Asiedu R
    BMC Plant Biol; 2019 Apr; 19(1):129. PubMed ID: 30953477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can pyraclostrobin and epoxiconazole protect conventional and stay-green maize varieties grown under drought stress?
    Sulewska H; Ratajczak K; Panasiewicz K; Kalaji HM
    PLoS One; 2019; 14(8):e0221116. PubMed ID: 31430301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.).
    Naz R; Sarfraz A; Anwar Z; Yasmin H; Nosheen A; Keyani R; Roberts TH
    Plant Physiol Biochem; 2021 Feb; 159():285-300. PubMed ID: 33418188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics and adaptation of seasonal drought in southern China under the background of global climate change. IV. Spatiotemporal characteristics of drought for maize based on crop water deficit index].
    Sui Y; Huang WH; Yang XG; Li MS
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2590-8. PubMed ID: 24417119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms.
    Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize.
    Liu S; Zenda T; Dong A; Yang Y; Wang N; Duan H
    Front Genet; 2021; 12():645443. PubMed ID: 33574835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.
    Casaretto JA; El-Kereamy A; Zeng B; Stiegelmeyer SM; Chen X; Bi YM; Rothstein SJ
    BMC Genomics; 2016 Apr; 17():312. PubMed ID: 27129581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.
    Sun S; Li C; Paterson AH; Jiang Y; Xu R; Robertson JS; Snider JL; Chee PW
    Front Plant Sci; 2018; 9():16. PubMed ID: 29403522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Response of dry matter partitioning coefficient of summer maize to drought stress in North China].
    Tan FY; Li H; Wang JL; Wang ZW
    Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):217-223. PubMed ID: 30907543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrieving the Diurnal FPAR of a Maize Canopy from the Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light Conditions.
    Zhao L; Liu Z; Xu S; He X; Ni Z; Zhao H; Ren S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.