These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30740240)

  • 1. 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering.
    Carrow JK; Di Luca A; Dolatshahi-Pirouz A; Moroni L; Gaharwar AK
    Regen Biomater; 2019 Feb; 6(1):29-37. PubMed ID: 30740240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.
    Hendrikson WJ; Zeng X; Rouwkema J; van Blitterswijk CA; van der Heide E; Moroni L
    Adv Healthc Mater; 2016 Jan; 5(2):232-43. PubMed ID: 26775915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomed Mater Res A; 2005 Dec; 75(4):957-65. PubMed ID: 16118789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration.
    Di Luca A; Longoni A; Criscenti G; Lorenzo-Moldero I; Klein-Gunnewiek M; Vancso J; van Blitterswijk C; Mota C; Moroni L
    Biofabrication; 2016 Feb; 8(1):015014. PubMed ID: 26924824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates.
    Kerativitayanan P; Gaharwar AK
    Acta Biomater; 2015 Oct; 26():34-44. PubMed ID: 26297886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models.
    Ricci C; Mota C; Moscato S; D'Alessandro D; Ugel S; Sartoris S; Bronte V; Boggi U; Campani D; Funel N; Moroni L; Danti S
    Biomatter; 2014; 4():e955386. PubMed ID: 25482337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells.
    Cámara-Torres M; Sinha R; Sanchez A; Habibovic P; Patelli A; Mota C; Moroni L
    Biomater Adv; 2022 Jun; 137():212833. PubMed ID: 35929265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering.
    Kerativitayanan P; Tatullo M; Khariton M; Joshi P; Perniconi B; Gaharwar AK
    ACS Biomater Sci Eng; 2017 Apr; 3(4):590-600. PubMed ID: 33429626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration.
    Tomasina C; Montalbano G; Fiorilli S; Quadros P; Azevedo A; Coelho C; Vitale-Brovarone C; Camarero-Espinosa S; Moroni L
    Biomater Adv; 2023 Jun; 149():213406. PubMed ID: 37054582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone.
    Deschamps AA; Claase MB; Sleijster WJ; de Bruijn JD; Grijpma DW; Feijen J
    J Control Release; 2002 Jan; 78(1-3):175-86. PubMed ID: 11772459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.
    Nandakumar A; Barradas A; de Boer J; Moroni L; van Blitterswijk C; Habibovic P
    Biomatter; 2013; 3(2):. PubMed ID: 23507924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering.
    Higuera GA; Ramos T; Gloria A; Ambrosio L; Di Luca A; Pechkov N; de Wijn JR; van Blitterswijk CA; Moroni L
    Front Bioeng Biotechnol; 2021; 9():704185. PubMed ID: 34595158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: an experimental and numerical analysis.
    Moroni L; Poort G; Van Keulen F; de Wijn JR; van Blitterswijk CA
    J Biomed Mater Res A; 2006 Sep; 78(3):605-14. PubMed ID: 16758454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditioning of 3D Printed Nanoengineered Ionic-Covalent Entanglement Scaffolds with iP-hMSCs Derived Matrix.
    Sears C; Mondragon E; Richards ZI; Sears N; Chimene D; McNeill EP; Gregory CA; Gaharwar AK; Kaunas R
    Adv Healthc Mater; 2020 Aug; 9(15):e1901580. PubMed ID: 32147960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rheology of PEOT/PBT Block Copolymers in the Melt State and in the Thermally-Induced Sol/Gel Transition. Implications on the 3D-Printing Bio-Scaffold Process.
    Vanzanella V; Scatto M; Zant E; Sisani M; Bastianini M; Grizzuti N
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30634705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.
    Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach.
    Xavier JR; Thakur T; Desai P; Jaiswal MK; Sears N; Cosgriff-Hernandez E; Kaunas R; Gaharwar AK
    ACS Nano; 2015 Mar; 9(3):3109-18. PubMed ID: 25674809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEOT/PBT Guides Enhance Nerve Regeneration in Long Gap Defects.
    Santos D; Wieringa P; Moroni L; Navarro X; Valle JD
    Adv Healthc Mater; 2017 Feb; 6(3):. PubMed ID: 27973708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds.
    Gaharwar AK; Mihaila SM; Kulkarni AA; Patel A; Di Luca A; Reis RL; Gomes ME; van Blitterswijk C; Moroni L; Khademhosseini A
    J Control Release; 2014 Aug; 187():66-73. PubMed ID: 24794894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.