These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30740262)

  • 1. Enantioselective Synthesis of Pharmaceutically Active γ-Aminobutyric Acids Using a Tailor-Made Artificial Michaelase in One-Pot Cascade Reactions.
    Biewenga L; Saravanan T; Kunzendorf A; van der Meer JY; Pijning T; Tepper PG; van Merkerk R; Charnock SJ; Thunnissen AWH; Poelarends GJ
    ACS Catal; 2019 Feb; 9(2):1503-1513. PubMed ID: 30740262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective Aldol Addition of Acetaldehyde to Aromatic Aldehydes Catalyzed by Proline-Based Carboligases.
    Saifuddin M; Guo C; Biewenga L; Saravanan T; Charnock SJ; Poelarends GJ
    ACS Catal; 2020 Feb; 10(4):2522-2527. PubMed ID: 32117575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Type 1 Aldolase, NahE, Catalyzes a Stereoselective Nitro-Michael Reaction: Synthesis of β-Aryl-γ-nitrobutyric Acids.
    Fansher DJ; Palmer DRJ
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214539. PubMed ID: 36484780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases.
    van der Meer JY; Poddar H; Baas BJ; Miao Y; Rahimi M; Kunzendorf A; van Merkerk R; Tepper PG; Geertsema EM; Thunnissen AM; Quax WJ; Poelarends GJ
    Nat Commun; 2016 Mar; 7():10911. PubMed ID: 26952338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalytic Michael-type additions of acetaldehyde to nitroolefins with the proline-based enzyme 4-oxalocrotonate tautomerase yielding enantioenriched γ-nitroaldehydes.
    Geertsema EM; Miao Y; Tepper PG; de Haan P; Zandvoort E; Poelarends GJ
    Chemistry; 2013 Oct; 19(43):14407-10. PubMed ID: 24115023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Enzyme Activity for Nonaqueous Solvents: Engineering an Enantioselective "Michaelase" for Catalysis in High Concentrations of Ethanol.
    Guo C; Biewenga L; Lubberink M; van Merkerk R; Poelarends GJ
    Chembiochem; 2020 May; 21(10):1499-1504. PubMed ID: 31886617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocatalytic Cascade Synthesis of Enantioenriched Epoxides and Triols from Biomass-Derived Synthons Driven by Specifically Designed Enzymes.
    Grandi E; Crotti M; Sigmund MC; Xu G; Tepper PG; Poelarends GJ
    Chemistry; 2023 Jun; 29(31):e202300697. PubMed ID: 36893219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiocomplementary Michael Additions of Acetaldehyde to Aliphatic Nitroalkenes Catalyzed by Proline-Based Carboligases.
    Kunzendorf A; Saifuddin M; Poelarends GJ
    Chembiochem; 2022 Mar; 23(6):e202100644. PubMed ID: 35049100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemical Control of Enzymatic Carbon-Carbon Bond-Forming Michael-Type Additions by "Substrate Engineering".
    Miao Y; Tepper PG; Geertsema EM; Poelarends GJ
    European J Org Chem; 2016 Nov; 2016(32):5350-5354. PubMed ID: 27917069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic Asymmetric Michael Additions of Nitromethane to α,β-Unsaturated Aldehydes via Enzyme-bound Iminium Ion Intermediates.
    Guo C; Saifuddin M; Saravanan T; Sharifi M; Poelarends GJ
    ACS Catal; 2019 May; 9(5):4369-4373. PubMed ID: 31080691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles.
    Cao ZY; Zhou F; Zhou J
    Acc Chem Res; 2018 Jun; 51(6):1443-1454. PubMed ID: 29808678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telescoped Continuous Flow Synthesis of Optically Active γ-Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut.
    Ötvös SB; Llanes P; Pericàs MA; Kappe CO
    Org Lett; 2020 Oct; 22(20):8122-8126. PubMed ID: 33026815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Acetaldehyde Synthesis for Carboligation Reactions.
    Biewenga L; Kunzendorf A; Poelarends GJ
    Chembiochem; 2020 May; 21(10):1505-1509. PubMed ID: 31868962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-Enabled Catalytic Asymmetric Michael Reactions of Unreactive Nitroalkenes: One-Pot Synthesis of Chiral GABA-Analogs with All-Carbon Quaternary Stereogenic Centers.
    Sim JH; Song CE
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1835-1839. PubMed ID: 28097766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis.
    Wang YB; Tan B
    Acc Chem Res; 2018 Feb; 51(2):534-547. PubMed ID: 29419282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Acid to Nitrile: A Chemoenzymatic Three-Step Route.
    Winkler M; Horvat M; Schiefer A; Weilch V; Rudroff F; Pátek M; Martínková L
    Adv Synth Catal; 2023 Jan; 365(1):37-42. PubMed ID: 37082351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective synthesis of d-amino acids from readily available l-amino acids by a one-pot biocatalytic stereoinversion cascade.
    Zhang D; Jing X; Zhang W; Nie Y; Xu Y
    RSC Adv; 2019 Sep; 9(51):29927-29935. PubMed ID: 35531513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereodivergent Biocatalytic Formal Reduction of α-Angelica Lactone to (R)- and (S)-γ-Valerolactone in a One-Pot Cascade.
    Tonoli A; Wagner K; Bacchin A; Reiter T; Bergantino E; Robescu MS; Hall M
    Chembiochem; 2023 May; 24(9):e202300146. PubMed ID: 36940139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lewis Base-Brønsted Acid-Enzyme Catalysis in Enantioselective Multistep One-Pot Syntheses.
    Mantel M; Giesler M; Guder M; Rüthlein E; Hartmann L; Pietruszka J
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16700-16706. PubMed ID: 33856095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A short, chemoenzymatic route to chiral beta-aryl-gamma-amino acids using reductases from anaerobic bacteria.
    Fryszkowska A; Fisher K; Gardiner JM; Stephens GM
    Org Biomol Chem; 2010 Feb; 8(3):533-5. PubMed ID: 20090967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.