These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30740280)

  • 1. Efficient Computation of Cartilage Contact Pressures within Dynamic Simulations of Movement.
    Smith CR; Choi KW; Negrut D; Thelen DG
    Comput Methods Biomech Biomed Eng Imaging Vis; 2018; 6(5):491-498. PubMed ID: 30740280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The coupled effects of crouch gait and patella alta on tibiofemoral and patellofemoral cartilage loading in children.
    Brandon SCE; Thelen DG; Smith CR; Novacheck TF; Schwartz MH; Lenhart RL
    Gait Posture; 2018 Feb; 60():181-187. PubMed ID: 29248848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement.
    Lenhart RL; Kaiser J; Smith CR; Thelen DG
    Ann Biomed Eng; 2015 Nov; 43(11):2675-85. PubMed ID: 25917122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale finite element musculoskeletal model for intact knee dynamics.
    Shu L; Yamamoto K; Yoshizaki R; Yao J; Sato T; Sugita N
    Comput Biol Med; 2022 Feb; 141():105023. PubMed ID: 34772508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running.
    Lenhart RL; Smith CR; Vignos MF; Kaiser J; Heiderscheit BC; Thelen DG
    J Biomech; 2015 Aug; 48(11):2871-8. PubMed ID: 26070646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multibody dynamic simulation of knee contact mechanics.
    Bei Y; Fregly BJ
    Med Eng Phys; 2004 Nov; 26(9):777-89. PubMed ID: 15564115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
    Guess TM; Liu H; Bhashyam S; Thiagarajan G
    Comput Methods Biomech Biomed Engin; 2013; 16(3):256-70. PubMed ID: 21970765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading.
    Venäläinen MS; Mononen ME; Väänänen SP; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech; 2016 May; 49(7):1111-1120. PubMed ID: 26965471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Ligament Properties on Tibiofemoral Mechanics in Walking.
    Smith CR; Lenhart RL; Kaiser J; Vignos MF; Thelen DG
    J Knee Surg; 2016 Feb; 29(2):99-106. PubMed ID: 26408997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Musculoskeletal Model for Estimating Hip Contact Pressure During Walking.
    Gaffney BMM; Williams ST; Todd JN; Weiss JA; Harris MD
    Ann Biomed Eng; 2022 Dec; 50(12):1954-1963. PubMed ID: 35864367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis.
    Herzog W; Diet S; Suter E; Mayzus P; Leonard TR; Müller C; Wu JZ; Epstein M
    J Biomech; 1998 Dec; 31(12):1137-45. PubMed ID: 9882046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Does Chondrolabral Damage and Labral Repair Influence the Mechanics of the Hip in the Setting of Cam Morphology? A Finite-Element Modeling Study.
    Todd JN; Maak TG; Anderson AE; Ateshian GA; Weiss JA
    Clin Orthop Relat Res; 2022 Mar; 480(3):602-615. PubMed ID: 34766936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait.
    Zevenbergen L; Smith CR; Van Rossom S; Thelen DG; Famaey N; Vander Sloten J; Jonkers I
    PLoS One; 2018; 13(10):e0205842. PubMed ID: 30325946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of patellofemoral digital twins for patellar tracking and treatment prediction: comparison of 3D models and contact detection algorithms.
    Michaud F; Luaces A; Mouzo F; Cuadrado J
    Front Bioeng Biotechnol; 2024; 12():1347720. PubMed ID: 38481569
    [No Abstract]   [Full Text] [Related]  

  • 19. Computational assessment on the impact of collagen fiber orientation in cartilages on healthy and arthritic knee kinetics/kinematics.
    Raju V; Koorata PK
    Med Eng Phys; 2023 Jul; 117():103997. PubMed ID: 37331751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.