BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30740565)

  • 1. Physiological diversity of orchids.
    Zhang S; Yang Y; Li J; Qin J; Zhang W; Huang W; Hu H
    Plant Divers; 2018 Aug; 40(4):196-208. PubMed ID: 30740565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: unravelling C3-CAM plasticity in an organ-compartmented way.
    Rodrigues MA; Matiz A; Cruz AB; Matsumura AT; Takahashi CA; Hamachi L; Félix LM; Pereira PN; Latansio-Aidar SR; Aidar MP; Demarco D; Freschi L; Mercier H; Kerbauy GB
    Ann Bot; 2013 Jul; 112(1):17-29. PubMed ID: 23618898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of mycorrhizal fungi on seed germination and growth in terrestrial and epiphytic orchids.
    Alghamdi SA
    Saudi J Biol Sci; 2019 Mar; 26(3):495-502. PubMed ID: 30899164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orchid mycorrhizal fungi and ascomycetous fungi in epiphytic Vanda falcata roots occupy different niches during growth and development.
    Pujasatria GC; Nishiguchi I; Miura C; Yamato M; Kaminaka H
    Mycorrhiza; 2022 Nov; 32(5-6):481-495. PubMed ID: 35844010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular Enzyme Activities and Carbon/Nitrogen Utilization in Mycorrhizal Fungi Isolated From Epiphytic and Terrestrial Orchids.
    Zhao Z; Shao S; Liu N; Liu Q; Jacquemyn H; Xing X
    Front Microbiol; 2021; 12():787820. PubMed ID: 34992588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A leafless epiphytic orchid, Taeniophyllum glandulosum Blume (Orchidaceae), is specifically associated with the Ceratobasidiaceae family of basidiomycetous fungi.
    Rammitsu K; Yagame T; Yamashita Y; Yukawa T; Isshiki S; Ogura-Tsujita Y
    Mycorrhiza; 2019 Mar; 29(2):159-166. PubMed ID: 30707331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mycorrhizal community of the epiphytic orchid Thrixspermum japonicum is strongly biased toward a single Ceratobasidiaceae fungus, despite a wide range of fungal partners.
    Rammitsu K; Yukawa T; Yamashita Y; Isshiki S; Ogura-Tsujita Y
    Am J Bot; 2020 Dec; 107(12):1654-1662. PubMed ID: 33306193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycorrhizal diversity in photosynthetic terrestrial orchids.
    McCormick MK; Whigham DF; O'Neill J
    New Phytol; 2004 Aug; 163(2):425-438. PubMed ID: 33873625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untangling above- and belowground mycorrhizal fungal networks in tropical orchids.
    Leake JR; Cameron DD
    Mol Ecol; 2012 Oct; 21(20):4921-4. PubMed ID: 23057699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycorrhizal specificity differences in epiphytic habitat: three epiphytic orchids harbor distinct ecological and physiological specificity.
    Rammitsu K; Goto M; Yamashita Y; Yukawa T; Ogura-Tsujita Y
    J Plant Res; 2023 Nov; 136(6):803-816. PubMed ID: 37572242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid.
    Li JW; Zhang SB; Xi HP; Bradshaw CJA; Zhang JL
    Ann Bot; 2020 Jul; 126(2):261-275. PubMed ID: 32318689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids.
    Sommer J; Pausch J; Brundrett MC; Dixon KW; Bidartondo MI; Gebauer G
    Am J Bot; 2012 Jul; 99(7):1133-45. PubMed ID: 22753812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought.
    Li JW; Chen XD; Hu XY; Ma L; Zhang SB
    Planta; 2018 Jan; 247(1):69-97. PubMed ID: 28871432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon and nitrogen gain during the growth of orchid seedlings in nature.
    Stöckel M; Těšitelová T; Jersáková J; Bidartondo MI; Gebauer G
    New Phytol; 2014 Apr; 202(2):606-615. PubMed ID: 24444001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs.
    Yang SJ; Sun M; Yang QY; Ma RY; Zhang JL; Zhang SB
    AoB Plants; 2016; 8():. PubMed ID: 27339052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake.
    Zotz G; Winkler U
    Oecologia; 2013 Mar; 171(3):733-41. PubMed ID: 23292456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to ontogeny.
    Fernández M; Kaur J; Sharma J
    Mycorrhiza; 2023 Mar; 33(1-2):87-105. PubMed ID: 36651985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids.
    Li T; Yang W; Wu S; Selosse MA; Gao J
    Front Plant Sci; 2021; 12():646325. PubMed ID: 34025694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leafless epiphytic orchids share Ceratobasidiaceae mycorrhizal fungi.
    Qin J; Zhang W; Feng JQ; Zhang SB
    Mycorrhiza; 2021 Oct; 31(5):625-635. PubMed ID: 34319462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycorrhizal diversity and community composition in co-occurring Cypripedium species.
    Liu H; Jacquemyn H; Yu S; Chen W; He X; Huang Y
    Mycorrhiza; 2023 Mar; 33(1-2):107-118. PubMed ID: 36396734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.