These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30740684)
1. The bizarre skull of Xenotyphlops sheds light on synapomorphies of Typhlopoidea. Chretien J; Wang-Claypool CY; Glaw F; Scherz MD J Anat; 2019 May; 234(5):637-655. PubMed ID: 30740684 [TBL] [Abstract][Full Text] [Related]
2. Insights into skull evolution in fossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea). Strong CRC; Palci A; Caldwell MW J Anat; 2021 Jan; 238(1):146-172. PubMed ID: 32815172 [TBL] [Abstract][Full Text] [Related]
3. Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Miralles A; Marin J; Markus D; Herrel A; Hedges SB; Vidal N J Evol Biol; 2018 Dec; 31(12):1782-1793. PubMed ID: 30193402 [TBL] [Abstract][Full Text] [Related]
4. Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence. Pyron RA; Wallach V Zootaxa; 2014 Jul; 3829():1-81. PubMed ID: 25081272 [TBL] [Abstract][Full Text] [Related]
5. Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). Rieppel O; Kley NJ; Maisano JA J Morphol; 2009 May; 270(5):536-57. PubMed ID: 19107940 [TBL] [Abstract][Full Text] [Related]
6. The morphological diversity of the quadrate bone in squamate reptiles as revealed by high-resolution computed tomography and geometric morphometrics. Palci A; Caldwell MW; Hutchinson MN; Konishi T; Lee MSY J Anat; 2020 Feb; 236(2):210-227. PubMed ID: 31667837 [TBL] [Abstract][Full Text] [Related]
7. Digging into blindsnakes' morphology: Description of the skull, lower jaw, and cervical vertebrae of two Amerotyphlops (Hedges et al., 2014) (Serpentes, Typhlopidae) with comments on the typhlopoidean skull morphological diversity. Lira I; Martins A Anat Rec (Hoboken); 2021 Oct; 304(10):2198-2214. PubMed ID: 33634963 [TBL] [Abstract][Full Text] [Related]
8. Moving beyond the surface: Comparative head and neck myology of threadsnakes (Epictinae, Leptotyphlopidae, Serpentes), with comments on the 'scolecophidian' muscular system. Martins A; Passos P; Pinto R PLoS One; 2019; 14(7):e0219661. PubMed ID: 31318886 [TBL] [Abstract][Full Text] [Related]
9. First evidence of convergent lifestyle signal in reptile skull roof microanatomy. Ebel R; Müller J; Ramm T; Hipsley C; Amson E BMC Biol; 2020 Nov; 18(1):185. PubMed ID: 33250048 [TBL] [Abstract][Full Text] [Related]
10. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Watanabe A; Fabre AC; Felice RN; Maisano JA; Müller J; Herrel A; Goswami A Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14688-14697. PubMed ID: 31262818 [TBL] [Abstract][Full Text] [Related]
11. Morphology of the lower jaw and suspensorium in the Texas blindsnake, Leptotyphlops dulcis (Scolecophidia: Leptotyphlopidae). Kley NJ J Morphol; 2006 Apr; 267(4):494-515. PubMed ID: 16429440 [TBL] [Abstract][Full Text] [Related]
12. Cranial osteology of Hypoptophis (Aparallactinae: Atractaspididae: Caenophidia), with a discussion on the evolution of its fossorial adaptations. Das S; Brecko J; Pauwels OSG; Merilä J J Morphol; 2022 Apr; 283(4):510-538. PubMed ID: 35094424 [TBL] [Abstract][Full Text] [Related]
13. Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes. Strong CRC; Scherz MD; Caldwell MW Sci Rep; 2022 Aug; 12(1):14469. PubMed ID: 36008512 [TBL] [Abstract][Full Text] [Related]
14. To move or not to move? Skull and lower jaw morphology of the blindsnake Afrotyphlops punctatus (Leach, 1819) (Serpentes, Typhlopoidea, Typhlopidae) with comments on its previously advocated cranial kinesis. Deolindo V; Koch C; Joshi M; Martins A Anat Rec (Hoboken); 2021 Oct; 304(10):2279-2291. PubMed ID: 33650212 [TBL] [Abstract][Full Text] [Related]
15. The ecological origins of snakes as revealed by skull evolution. Da Silva FO; Fabre AC; Savriama Y; Ollonen J; Mahlow K; Herrel A; Müller J; Di-Poï N Nat Commun; 2018 Jan; 9(1):376. PubMed ID: 29371624 [TBL] [Abstract][Full Text] [Related]
16. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics. Palci A; Lee MS; Hutchinson MN J Anat; 2016 Dec; 229(6):723-754. PubMed ID: 27329823 [TBL] [Abstract][Full Text] [Related]
17. Osteology and Cartilaginous Elements of Trilepida salgueiroi (Amaral, 1954) (Scolecophidia: Leptotyphlopidae). Pinto RR; Martins AR; Curcio F; Ramos Lde O Anat Rec (Hoboken); 2015 Oct; 298(10):1722-47. PubMed ID: 26119424 [TBL] [Abstract][Full Text] [Related]
18. A new snake skull from the Paleocene of Bolivia sheds light on the evolution of macrostomatans. Scanferla A; Zaher H; Novas FE; de Muizon C; Céspedes R PLoS One; 2013; 8(3):e57583. PubMed ID: 23469206 [TBL] [Abstract][Full Text] [Related]
19. A transitional snake from the Late Cretaceous period of North America. Longrich NR; Bhullar BA; Gauthier JA Nature; 2012 Aug; 488(7410):205-8. PubMed ID: 22832579 [TBL] [Abstract][Full Text] [Related]
20. Comparison of cranial form and function in association with diet in natricine snakes. Hampton PM J Morphol; 2011 Dec; 272(12):1435-43. PubMed ID: 21780158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]