These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30740940)

  • 21. Clinical characterization of Dicea a new cellulose membrane for haemodialysis.
    Hoenich NA; Woffindin C; Cox PJ; Goldfinch M; Roberts SJ
    Clin Nephrol; 1997 Oct; 48(4):253-9. PubMed ID: 9352161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membranes for dialysis.
    Klinkmann H; Vienken J
    Nephrol Dial Transplant; 1995; 10 Suppl 3():39-45. PubMed ID: 7494613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The past, present and future of the dialyzer.
    Mineshima M
    Contrib Nephrol; 2015; 185():8-14. PubMed ID: 26023010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.
    MacLeod A; Daly C; Khan I; Vale L; Campbell M; Wallace S; Cody J; Donaldson C; Grant A
    Cochrane Database Syst Rev; 2001; (3):CD003234. PubMed ID: 11687058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Evolving Patterns of Uremia: Unmet Clinical Needs in Dialysis.
    Yu X
    Contrib Nephrol; 2017; 191():1-7. PubMed ID: 28910786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leukocyte adhesion molecules and leukocyte-platelet interactions during hemodialysis: effects of different synthetic membranes.
    Sirolli V; Ballone E; Amoroso L; Di Liberato L; Di Mascio R; Capelli P; Albertazzi A; Bonomini M
    Int J Artif Organs; 1999 Aug; 22(8):536-42. PubMed ID: 10533909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leukocyte, platelet and endothelial activation in patients with acute renal failure treated by intermittent hemodialysis.
    de Sá HM; Freitas LA; Alves VC; Garção MF; Rosa MA; Marques AA
    Am J Nephrol; 2001; 21(4):264-73. PubMed ID: 11509797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Vitro Dialysis of Cytokine-Rich Plasma With High and Medium Cut-Off Membranes Reduces Its Procalcific Activity.
    Willy K; Hulko M; Storr M; Speidel R; Gauss J; Schindler R; Zickler D
    Artif Organs; 2017 Sep; 41(9):803-809. PubMed ID: 28524237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatibility and functional performance of a polyethylene glycol acid-grafted cellulosic membrane for hemodialysis.
    Sirolli V; Di Stante S; Stuard S; Di Liberato L; Amoroso L; Cappelli P; Bonomini M
    Int J Artif Organs; 2000 Jun; 23(6):356-64. PubMed ID: 10919752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes.
    Piroddi M; Pilolli F; Aritomi M; Galli F
    Am J Nephrol; 2012; 35(6):559-72. PubMed ID: 22677717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application.
    Modi A; Verma SK; Bellare J
    Colloids Surf B Biointerfaces; 2018 Jul; 167():457-467. PubMed ID: 29723817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expanded hemodialysis: a new concept of renal replacement therapy.
    Jonny J; Teressa M
    J Investig Med; 2023 Jan; 71(1):38-41. PubMed ID: 36316065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biocompatibility of different hemodialysis membranes: activation of complement and leukopenia.
    Wegmüller E; Montandon A; Nydegger U; Descoeudres C
    Int J Artif Organs; 1986 Mar; 9(2):85-92. PubMed ID: 3699914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis.
    Clark WR; Hamburger RJ; Lysaght MJ
    Kidney Int; 1999 Dec; 56(6):2005-15. PubMed ID: 10594776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Comparison of biocompatibility of hemophane, cellulose diacetate and acrilonitile membranes in hemodialysis].
    Germin Petrović D
    Acta Med Croatica; 2004; 58(1):31-6. PubMed ID: 15125391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatibility aspects of cellophane, cellulose acetate, polyacrylonitrile, polysulfone and polycarbonate hemodialyzers.
    Smeby LC; Widerøe TE; Balstad T; Jørstad S
    Blood Purif; 1986; 4(1-3):93-101. PubMed ID: 3730167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in bio-incompatibility among four biocompatible dialyzer membranes using in maintenance hemodialysis patients.
    Zhang DL; Liu J; Cui WY; Ji DY; Zhang Y; Liu WH
    Ren Fail; 2011; 33(7):682-91. PubMed ID: 21787159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dialysis membranes on the kinetics of tumor necrosis factor-alpha production by peripheral mononuclear cells in chronic hemodialysis patients.
    Kushihata S; Yorioka N; Oda H; Ye XF; Yamakido M
    Int J Artif Organs; 1998 Jul; 21(7):384-90. PubMed ID: 9745992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical evaluation of four different high-flux hemodialyzers under conventional conditions in vivo.
    Sombolos K; Tsitamidou Z; Kyriazis G; Karagianni A; Kantaropoulou M; Progia E
    Am J Nephrol; 1997; 17(5):406-12. PubMed ID: 9382156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanded Hemodialysis: A New Therapy for a New Class of Membranes.
    Ronco C; La Manna G
    Contrib Nephrol; 2017; 190():124-133. PubMed ID: 28535525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.