These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30741286)

  • 21. Engineering 2D Architectures toward High-Performance Micro-Supercapacitors.
    Da Y; Liu J; Zhou L; Zhu X; Chen X; Fu L
    Adv Mater; 2019 Jan; 31(1):e1802793. PubMed ID: 30133023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered nanomembranes for smart energy storage devices.
    Wang X; Chen Y; Schmidt OG; Yan C
    Chem Soc Rev; 2016 Mar; 45(5):1308-30. PubMed ID: 26691394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.
    Peng L; Zhu Y; Li H; Yu G
    Small; 2016 Dec; 12(45):6183-6199. PubMed ID: 27758041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.
    Wang L; Hu X
    Chem Asian J; 2018 Jun; 13(12):1518-1529. PubMed ID: 29667345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
    El-Kady MF; Ihns M; Li M; Hwang JY; Mousavi MF; Chaney L; Lech AT; Kaner RB
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4233-8. PubMed ID: 25831542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage.
    Zhou J; Wang B
    Chem Soc Rev; 2017 Nov; 46(22):6927-6945. PubMed ID: 28956880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy storage materials synthesized from ionic liquids.
    Gebresilassie Eshetu G; Armand M; Scrosati B; Passerini S
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13342-59. PubMed ID: 25303401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage.
    Li R; Zhou Y; Li W; Zhu J; Huang W
    Research (Wash D C); 2020; 2020():8685436. PubMed ID: 32426728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning toward advanced energy storage devices and systems.
    Gao T; Lu W
    iScience; 2021 Jan; 24(1):101936. PubMed ID: 33458608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High to ultra-high power electrical energy storage.
    Sherrill SA; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Dec; 13(46):20714-23. PubMed ID: 21997843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
    Ashok Kumar N; Baek JB
    Chem Commun (Camb); 2014 Jun; 50(48):6298-308. PubMed ID: 24797734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimuli-Responsive Electrochemical Energy Storage Devices.
    Parsimehr H; Ehsani A
    Chem Rec; 2022 Sep; 22(9):e202200075. PubMed ID: 35832003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchically structured materials for lithium batteries.
    Xiao J; Zheng J; Li X; Shao Y; Zhang JG
    Nanotechnology; 2013 Oct; 24(42):424004. PubMed ID: 24067410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging electrochemical energy conversion and storage technologies.
    Badwal SP; Giddey SS; Munnings C; Bhatt AI; Hollenkamp AF
    Front Chem; 2014; 2():79. PubMed ID: 25309898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.