These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 30741355)
1. Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505. Wu J; Zhang J; Zhang H; Gao M; Liu L; Zhan X Bioprocess Biosyst Eng; 2019 May; 42(5):777-784. PubMed ID: 30741355 [TBL] [Abstract][Full Text] [Related]
2. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
3. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
4. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
5. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
6. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
7. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
8. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Kourmentza C; Costa J; Azevedo Z; Servin C; Grandfils C; De Freitas V; Reis MAM Bioresour Technol; 2018 Jan; 247():829-837. PubMed ID: 30060419 [TBL] [Abstract][Full Text] [Related]
9. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Wang X; Li D; Yue S; Yuan Z; Li S Molecules; 2024 Apr; 29(9):. PubMed ID: 38731483 [TBL] [Abstract][Full Text] [Related]
10. High-Yield Di-Rhamnolipid Production by Li Z; Zhang Y; Lin J; Wang W; Li S Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013 [TBL] [Abstract][Full Text] [Related]
11. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037 [TBL] [Abstract][Full Text] [Related]
12. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
13. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Gong Z; Peng Y; Wang Q Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946 [TBL] [Abstract][Full Text] [Related]
14. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related]
15. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462 [TBL] [Abstract][Full Text] [Related]
16. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572 [TBL] [Abstract][Full Text] [Related]
17. Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Baskaran SM; Zakaria MR; Mukhlis Ahmad Sabri AS; Mohamed MS; Wasoh H; Toshinari M; Hassan MA; Banat IM Environ Pollut; 2021 May; 276():116742. PubMed ID: 33621735 [TBL] [Abstract][Full Text] [Related]
18. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254 [TBL] [Abstract][Full Text] [Related]
20. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Perfumo A; Banat IM; Canganella F; Marchant R Appl Microbiol Biotechnol; 2006 Aug; 72(1):132. PubMed ID: 16344932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]