These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30741460)
1. An effective and accurate identification system of Mycobacterium tuberculosis using convolution neural networks. Kuok CP; Horng MH; Liao YM; Chow NH; Sun YN Microsc Res Tech; 2019 Jun; 82(6):709-719. PubMed ID: 30741460 [TBL] [Abstract][Full Text] [Related]
3. A pilot study of same day sputum smear examination, its feasibility and usefulness in diagnosis of pulmonary TB. Myneedu VP; Verma AK; Sharma PP; Behera D Indian J Tuberc; 2011 Oct; 58(4):160-7. PubMed ID: 22533165 [TBL] [Abstract][Full Text] [Related]
4. Computational techniques for the automated detection of mycobacterium tuberculosis from digitized sputum smear microscopic images: A systematic review. Kotei E; Thirunavukarasu R Prog Biophys Mol Biol; 2022 Jul; 171():4-16. PubMed ID: 35339515 [TBL] [Abstract][Full Text] [Related]
5. Added value of molecular assay Xpert MTB/RIF compared to sputum smear microscopy to assess the risk of tuberculosis transmission in a low-prevalence country. Opota O; Senn L; Prod'hom G; Mazza-Stalder J; Tissot F; Greub G; Jaton K Clin Microbiol Infect; 2016 Jul; 22(7):613-9. PubMed ID: 27139592 [TBL] [Abstract][Full Text] [Related]
6. Automated detection of tuberculosis in Ziehl-Neelsen-stained sputum smears using two one-class classifiers. Khutlang R; Krishnan S; Whitelaw A; Douglas TS J Microsc; 2010 Jan; 237(1):96-102. PubMed ID: 20055923 [TBL] [Abstract][Full Text] [Related]
7. A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images. Panicker RO; Soman B; Saini G; Rajan J J Med Syst; 2016 Jan; 40(1):17. PubMed ID: 26573654 [TBL] [Abstract][Full Text] [Related]
8. Automatic bright-field smear microscopy for diagnosis of pulmonary tuberculosis. Serrão MKM; Costa MGF; Fujimoto LBM; Ogusku MM; Costa Filho CFF Comput Biol Med; 2024 Apr; 172():108167. PubMed ID: 38461699 [TBL] [Abstract][Full Text] [Related]
9. Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble. Khatibi T; Shahsavari A; Farahani A Phys Eng Sci Med; 2021 Mar; 44(1):291-311. PubMed ID: 33616887 [TBL] [Abstract][Full Text] [Related]
10. Image processing for AFB segmentation in bacilloscopies of pulmonary tuberculosis diagnosis. Díaz-Huerta JL; Téllez-Anguiano ADC; Fraga-Aguilar M; Gutiérrez-Gnecchi JA; Arellano-Calderón S PLoS One; 2019; 14(7):e0218861. PubMed ID: 31306434 [TBL] [Abstract][Full Text] [Related]
11. Mycobacterium tuberculosis recognition with conventional microscopy. CostaFilho CF; Levy PC; Xavier CM; Costa MG; Fujimoto LB; Salem J Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6263-8. PubMed ID: 23367361 [TBL] [Abstract][Full Text] [Related]
12. COMPARISON OF GeneXpert MTB/RIF ASSAY WITH CONVENTIONAL AFB SMEAR FOR DIAGNOSIS OF PULMONARY TUBERCULOSIS IN NORTHEASTERN THAILAND. Reechaipichitkul W; Suleesathira T; Chaimanee P Southeast Asian J Trop Med Public Health; 2017 Mar; 48(2):313-21. PubMed ID: 29641882 [TBL] [Abstract][Full Text] [Related]
13. GeneXpert assay for rapid detection of Mycobacterium tuberculosis complex in respiratory specimens from a high TB endemic area of Pakistan. Khan SU; Rahman H; Ayaz S; Qasim M; Jabbar A; Khurshid M; Hussain M; Muhammad N; Rehman SU; Ali N Microb Pathog; 2016 Jun; 95():82-85. PubMed ID: 27032999 [TBL] [Abstract][Full Text] [Related]
14. A sputum smear microscopy image database for automatic bacilli detection in conventional microscopy. Costa MG; Costa Filho CF; Kimura Junior A; Levy PC; Xavier CM; Fujimoto LB Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2841-4. PubMed ID: 25570583 [TBL] [Abstract][Full Text] [Related]
15. Is universal sample processing methodology better than conventional techniques for detection of tuberculosis? Mittal V; Haider F; Singhal S; Jamal S Indian J Med Microbiol; 2014; 32(4):404-7. PubMed ID: 25297025 [TBL] [Abstract][Full Text] [Related]
16. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. Steingart KR; Henry M; Laal S; Hopewell PC; Ramsay A; Menzies D; Cunningham J; Weldingh K; Pai M PLoS Med; 2007 Jun; 4(6):e202. PubMed ID: 17564490 [TBL] [Abstract][Full Text] [Related]
18. Identifying sputum specimens of high priority for examination by enhanced mycobacterial detection, identification, and susceptibility systems (EMDISS) to promote the rapid diagnosis of infectious pulmonary tuberculosis. Freeman R; Magee J; Barrett A J Clin Pathol; 2001 Aug; 54(8):613-6. PubMed ID: 11477116 [TBL] [Abstract][Full Text] [Related]
19. Bead capture increases the sensitivity of sputum microscopy for the diagnosis of tuberculosis in Beijing, China. Wang X; Zhao L; Yu X; Li Y; Ma Y; Dong L; Huang H Trans R Soc Trop Med Hyg; 2013 Nov; 107(11):741-3. PubMed ID: 24052595 [TBL] [Abstract][Full Text] [Related]
20. Nontuberculous mycobacterial species and Mertaniasih NM; Kusumaningrum D; Koendhori EB; ; Kusmiati T; Dewi DN Int J Mycobacteriol; 2017; 6(1):9-13. PubMed ID: 28317798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]