These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30741472)

  • 21. In Vivo Structure-Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism.
    Feldman AW; Romesberg FE
    J Am Chem Soc; 2017 Aug; 139(33):11427-11433. PubMed ID: 28796508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions.
    Jahiruddin S; Mandal N; Datta A
    Chemphyschem; 2018 Jan; 19(1):67-74. PubMed ID: 29139595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase.
    Wang G; He C; Zou J; Liu J; Du Y; Chen T
    ACS Synth Biol; 2022 Dec; 11(12):4142-4155. PubMed ID: 36455255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA display of folded RNA libraries enabling RNA-SELEX without reverse transcription.
    MacPherson IS; Temme JS; Krauss IJ
    Chem Commun (Camb); 2017 Mar; 53(19):2878-2881. PubMed ID: 28220154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems].
    Mukba SA; Vlasov PK; Kolosov PM; Shuvalova EY; Egorova TV; Alkalaeva EZ
    Mol Biol (Mosk); 2020; 54(4):531-541. PubMed ID: 32799218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards an Understanding of the Molecular Mechanisms of Variable Unnatural Base-Pair Behavior: A Biophysical Analysis of dNaM-dTPT3.
    Karadeema RJ; Morris SE; Lairson LL; Krishnamurthy R
    Chemistry; 2021 Oct; 27(56):13991-13997. PubMed ID: 34382264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCR with an expanded genetic alphabet.
    Malyshev DA; Seo YJ; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Oct; 131(41):14620-1. PubMed ID: 19788296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications.
    Stamos JL; Lentzsch AM; Lambowitz AM
    Mol Cell; 2017 Dec; 68(5):926-939.e4. PubMed ID: 29153391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations.
    Negi I; Kathuria P; Sharma P; Wetmore SD
    Phys Chem Chem Phys; 2017 Jun; 19(25):16365-16374. PubMed ID: 28657627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A semisynthetic organism engineered for the stable expansion of the genetic alphabet.
    Zhang Y; Lamb BM; Feldman AW; Zhou AX; Lavergne T; Li L; Romesberg FE
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1317-1322. PubMed ID: 28115716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription.
    Wang Y; Chen Y; Hu Y; Fang X
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22823-22832. PubMed ID: 32868439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expansion of the Genetic Alphabet: A Chemist's Approach to Synthetic Biology.
    Feldman AW; Romesberg FE
    Acc Chem Res; 2018 Feb; 51(2):394-403. PubMed ID: 29198111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-unnatural-base-pair system toward the expansion of the genetic code.
    Hirao I; Harada Y; Kimoto M; Mitsui T; Fujiwara T; Yokoyama S
    J Am Chem Soc; 2004 Oct; 126(41):13298-305. PubMed ID: 15479084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma.
    Hirao I; Kimoto M
    Proc Jpn Acad Ser B Phys Biol Sci; 2012; 88(7):345-67. PubMed ID: 22850726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymerase evolution: efforts toward expansion of the genetic code.
    Leconte AM; Chen L; Romesberg FE
    J Am Chem Soc; 2005 Sep; 127(36):12470-1. PubMed ID: 16144377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases.
    Marx A; Betz K
    Chemistry; 2020 Mar; 26(16):3446-3463. PubMed ID: 31544987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dye-Conjugated Spinach RNA by Genetic Alphabet Expansion.
    Hyun Lee K; Kimoto M; Kawai G; Okamoto I; Fin A; Hirao I
    Chemistry; 2022 Mar; 28(16):e202104396. PubMed ID: 35133046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic Insight into the Photoinduced Damage of an Unnatural Base Pair.
    Huo B; Zhang X; Wang C; Wang H; Zhu G; Zhu W; Zhu A; Mei H; Li L
    Chemistry; 2022 Sep; 28(53):e202201730. PubMed ID: 35766150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expansion of the genetic code via expansion of the genetic alphabet.
    Dien VT; Morris SE; Karadeema RJ; Romesberg FE
    Curr Opin Chem Biol; 2018 Oct; 46():196-202. PubMed ID: 30205312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair.
    Betz K; Kimoto M; Diederichs K; Hirao I; Marx A
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):12000-12003. PubMed ID: 28594080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.