These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30741472)

  • 61. Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.
    Kimoto M; Hirao I
    ACS Synth Biol; 2017 Oct; 6(10):1944-1951. PubMed ID: 28704034
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Base Pairing and Functional Insights into
    Mao S; Haruehanroengra P; Ranganathan SV; Shen F; Begley TJ; Sheng J
    ACS Chem Biol; 2021 Jan; 16(1):76-85. PubMed ID: 33332971
    [No Abstract]   [Full Text] [Related]  

  • 63. Substrate variations that affect the nucleic acid clamp activity of reverse transcriptases.
    Oz-Gleenberg I; Herzig E; Voronin N; Hizi A
    FEBS J; 2012 May; 279(10):1894-903. PubMed ID: 22443410
    [TBL] [Abstract][Full Text] [Related]  

  • 64. What sustains the unnatural base pairs (UBPs) with no hydrogen bonds.
    Jahiruddin S; Datta A
    J Phys Chem B; 2015 May; 119(18):5839-45. PubMed ID: 25893481
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Sato A; Kawai R; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2009; (53):73-4. PubMed ID: 19749266
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA.
    Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S
    Nat Methods; 2006 Sep; 3(9):729-35. PubMed ID: 16929319
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs.
    Matsuda S; Romesberg FE
    J Am Chem Soc; 2004 Nov; 126(44):14419-27. PubMed ID: 15521761
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry.
    Someya T; Ando A; Kimoto M; Hirao I
    Nucleic Acids Res; 2015 Aug; 43(14):6665-76. PubMed ID: 26130718
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Unnatural base pair systems for DNA/RNA-based biotechnology.
    Hirao I
    Curr Opin Chem Biol; 2006 Dec; 10(6):622-7. PubMed ID: 17035074
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs.
    Kawai R; Kimoto M; Ikeda S; Mitsui T; Endo M; Yokoyama S; Hirao I
    J Am Chem Soc; 2005 Dec; 127(49):17286-95. PubMed ID: 16332078
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of an unnatural base pair for efficient PCR amplification.
    Hirao I; Mitsui T; Kimoto M; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):9-10. PubMed ID: 18029560
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efforts to expand the genetic alphabet: identification of a replicable unnatural DNA self-pair.
    Henry AA; Olsen AG; Matsuda S; Yu C; Geierstanger BH; Romesberg FE
    J Am Chem Soc; 2004 Jun; 126(22):6923-31. PubMed ID: 15174862
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Non-hydrogen-bonded base pairs for specific transcription.
    Hirao I; Mitsui T; Kimoto M; Kawai R; Sato A; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2005; (49):33-4. PubMed ID: 17150619
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of template-primer in protection of reverse transcriptase from thermal inactivation.
    Gerard GF; Potter RJ; Smith MD; Rosenthal K; Dhariwal G; Lee J; Chatterjee DK
    Nucleic Acids Res; 2002 Jul; 30(14):3118-29. PubMed ID: 12136094
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Posttranscriptional site-directed spin labeling of large RNAs with an unnatural base pair system under non-denaturing conditions.
    Wang Y; Kathiresan V; Chen Y; Hu Y; Jiang W; Bai G; Liu G; Qin PZ; Fang X
    Chem Sci; 2020 Sep; 11(35):9655-9664. PubMed ID: 33224460
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Non-cognate template usage and alternative priming by a group II intron-encoded reverse transcriptase.
    Morozova T; Seo W; Zimmerly S
    J Mol Biol; 2002 Feb; 315(5):951-63. PubMed ID: 11827468
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs.
    Seo YJ; Malyshev DA; Lavergne T; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2011 Dec; 133(49):19878-88. PubMed ID: 21981600
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Can a Six-Letter Alphabet Increase the Likelihood of Photochemical Assault to the Genetic Code?
    Ashwood B; Pollum M; Crespo-Hernández CE
    Chemistry; 2016 Nov; 22(46):16648-16656. PubMed ID: 27723147
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.
    Potapov V; Fu X; Dai N; Corrêa IR; Tanner NA; Ong JL
    Nucleic Acids Res; 2018 Jun; 46(11):5753-5763. PubMed ID: 29750267
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.