These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30741472)
81. Relaxed primer specificity associated with reverse transcriptases encoded by the pFOXC retroplasmids of Fusarium oxysporum. Simpson EB; Ross SL; Marchetti SE; Kennell JC Eukaryot Cell; 2004 Dec; 3(6):1589-600. PubMed ID: 15590832 [TBL] [Abstract][Full Text] [Related]
82. Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. Leconte AM; Hwang GT; Matsuda S; Capek P; Hari Y; Romesberg FE J Am Chem Soc; 2008 Feb; 130(7):2336-43. PubMed ID: 18217762 [TBL] [Abstract][Full Text] [Related]
83. [An undamaged bulge in epsilon is essential for initiating priming of DHBV reverse transcriptase]. Hu KH; Feng H; Li H Bing Du Xue Bao; 2009 Jul; 25(4):296-302. PubMed ID: 19769164 [TBL] [Abstract][Full Text] [Related]
84. Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA. Fujino T; Yasumoto K; Yamazaki N; Hasome A; Sogawa K; Isobe H Chem Asian J; 2011 Nov; 6(11):2956-60. PubMed ID: 21913333 [TBL] [Abstract][Full Text] [Related]
85. Fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency virus types 1 and 2 and of murine leukemia virus: mispair extension frequencies. Bakhanashvili M; Hizi A Biochemistry; 1992 Oct; 31(39):9393-8. PubMed ID: 1382590 [TBL] [Abstract][Full Text] [Related]
86. Sanger Gap Sequencing for Genetic Alphabet Expansion of DNA. Kimoto M; Soh SHG; Hirao I Chembiochem; 2020 Aug; 21(16):2287-2296. PubMed ID: 32202023 [TBL] [Abstract][Full Text] [Related]
87. Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Hikida Y; Kimoto M; Yokoyama S; Hirao I Nat Protoc; 2010 Jul; 5(7):1312-23. PubMed ID: 20595959 [TBL] [Abstract][Full Text] [Related]
88. Efforts toward creating unnatural base pairs for an expanded genetic code. Hirao I; Mitsui T; Fujiwara T; Kimoto M; To T; Okuni T; Sato A; Harada Y; Yokoyama S Nucleic Acids Res Suppl; 2001; (1):17-8. PubMed ID: 12836242 [TBL] [Abstract][Full Text] [Related]
90. Reprograming the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet. Ledbetter MP; Karadeema RJ; Romesberg FE J Am Chem Soc; 2018 Jan; 140(2):758-765. PubMed ID: 29309130 [TBL] [Abstract][Full Text] [Related]
91. Amplification, Enrichment, and Sequencing of Mutagenic Methylated DNA Adduct through Specifically Pairing with Unnatural Nucleobases. Zhu W; Wang H; Li X; Tie W; Huo B; Zhu A; Li L J Am Chem Soc; 2022 Nov; 144(44):20165-20170. PubMed ID: 36287063 [TBL] [Abstract][Full Text] [Related]
92. Site-specifically arraying small molecules or proteins on DNA using an expanded genetic alphabet. Li Z; Lavergne T; Malyshev DA; Zimmermann J; Adhikary R; Dhami K; Ordoukhanian P; Sun Z; Xiang J; Romesberg FE Chemistry; 2013 Oct; 19(42):14205-14209. PubMed ID: 24026962 [TBL] [Abstract][Full Text] [Related]
93. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. Sun L; Ma X; Zhang B; Qin Y; Ma J; Du Y; Chen T RSC Chem Biol; 2022 Oct; 3(10):1173-1197. PubMed ID: 36320892 [TBL] [Abstract][Full Text] [Related]
94. Two are not enough: synthetic strategies and applications of unnatural base pairs. Dörrenhaus R; Wagner PK; Kath-Schorr S Biol Chem; 2023 Sep; 404(10):883-896. PubMed ID: 37354104 [TBL] [Abstract][Full Text] [Related]
96. Manganese Ions Individually Alter the Reverse Transcription Signature of Modified Ribonucleosides. Kristen M; Plehn J; Marchand V; Friedland K; Motorin Y; Helm M; Werner S Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32824672 [TBL] [Abstract][Full Text] [Related]
97. An efficient unnatural base pair for a base-pair-expanded transcription system. Mitsui T; Kimoto M; Harada Y; Yokoyama S; Hirao I J Am Chem Soc; 2005 Jun; 127(24):8652-8. PubMed ID: 15954770 [TBL] [Abstract][Full Text] [Related]
98. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase. Döring J; Hurek T Nucleic Acids Res; 2017 Apr; 45(7):3967-3984. PubMed ID: 28160599 [TBL] [Abstract][Full Text] [Related]
99. Structure, function, and evolution of bacterial reverse transcriptase. Inouye S; Inouye M Virus Genes; 1995; 11(2-3):81-94. PubMed ID: 8828137 [TBL] [Abstract][Full Text] [Related]
100. Initiation of in vitro reverse transcription from tRNA(Lys3) on HIV-1 or HIV-2 RNAs by both type 1 and 2 reverse transcriptases. Boulmé F; Freund F; Litvak S FEBS Lett; 1998 Jul; 430(3):165-70. PubMed ID: 9688531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]