BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1071 related articles for article (PubMed ID: 30741592)

  • 1. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation.
    Lampert MA; Orogo AM; Najor RH; Hammerling BC; Leon LJ; Wang BJ; Kim T; Sussman MA; Gustafsson ÅB
    Autophagy; 2019 Jul; 15(7):1182-1198. PubMed ID: 30741592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes.
    Yazdankhah M; Ghosh S; Shang P; Stepicheva N; Hose S; Liu H; Chamling X; Tian S; Sullivan MLG; Calderon MJ; Fitting CS; Weiss J; Jayagopal A; Handa JT; Sahel JA; Zigler JS; Kinchington PR; Zack DJ; Sinha D
    Autophagy; 2021 Oct; 17(10):3140-3159. PubMed ID: 33404293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy regulates functional differentiation of mammary epithelial cells.
    Elswood J; Pearson SJ; Payne HR; Barhoumi R; Rijnkels M; W Porter W
    Autophagy; 2021 Feb; 17(2):420-438. PubMed ID: 31983267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery.
    Marinković M; Šprung M; Novak I
    Autophagy; 2021 May; 17(5):1232-1243. PubMed ID: 32286918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
    Livingston MJ; Wang J; Zhou J; Wu G; Ganley IG; Hill JA; Yin XM; Dong Z
    Autophagy; 2019 Dec; 15(12):2142-2162. PubMed ID: 31066324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation.
    da Silva Rosa SC; Martens MD; Field JT; Nguyen L; Kereliuk SM; Hai Y; Chapman D; Diehl-Jones W; Aliani M; West AR; Thliveris J; Ghavami S; Rampitsch C; Dolinsky VW; Gordon JW
    Autophagy; 2021 Sep; 17(9):2257-2272. PubMed ID: 33044904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging views of mitophagy in immunity and autoimmune diseases.
    Xu Y; Shen J; Ran Z
    Autophagy; 2020 Jan; 16(1):3-17. PubMed ID: 30951392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation.
    Baechler BL; Bloemberg D; Quadrilatero J
    Autophagy; 2019 Sep; 15(9):1606-1619. PubMed ID: 30859901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles.
    Yao RQ; Ren C; Xia ZF; Yao YM
    Autophagy; 2021 Feb; 17(2):385-401. PubMed ID: 32048886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
    Xian H; Liou YC
    Autophagy; 2019 Dec; 15(12):2107-2125. PubMed ID: 30894073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BNIP3L/NIX degradation leads to mitophagy deficiency in ischemic brains.
    Wu X; Zheng Y; Liu M; Li Y; Ma S; Tang W; Yan W; Cao M; Zheng W; Jiang L; Wu J; Han F; Qin Z; Fang L; Hu W; Chen Z; Zhang X
    Autophagy; 2021 Aug; 17(8):1934-1946. PubMed ID: 32722981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria ROS and mitophagy in acute kidney injury.
    Su L; Zhang J; Gomez H; Kellum JA; Peng Z
    Autophagy; 2023 Feb; 19(2):401-414. PubMed ID: 35678504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multifaceted regulation of mitophagy by endogenous metabolites.
    Zhang T; Liu Q; Gao W; Sehgal SA; Wu H
    Autophagy; 2022 Jun; 18(6):1216-1239. PubMed ID: 34583624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2
    Liu H; Ho PW; Leung CT; Pang SY; Chang EES; Choi ZY; Kung MH; Ramsden DB; Ho SL
    Autophagy; 2021 Oct; 17(10):3196-3220. PubMed ID: 33300446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative mitochondrial quality control mediated by extracellular release.
    Choong CJ; Okuno T; Ikenaka K; Baba K; Hayakawa H; Koike M; Yokota M; Doi J; Kakuda K; Takeuchi T; Kuma A; Nakamura S; Nagai Y; Nagano S; Yoshimori T; Mochizuki H
    Autophagy; 2021 Oct; 17(10):2962-2974. PubMed ID: 33218272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease.
    Franco-Iborra S; Plaza-Zabala A; Montpeyo M; Sebastian D; Vila M; Martinez-Vicente M
    Autophagy; 2021 Mar; 17(3):672-689. PubMed ID: 32093570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells.
    Meyer N; Zielke S; Michaelis JB; Linder B; Warnsmann V; Rakel S; Osiewacz HD; Fulda S; Mittelbronn M; Münch C; Behrends C; Kögel D
    Autophagy; 2018; 14(10):1693-1709. PubMed ID: 29938581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis.
    Yan C; Gong L; Chen L; Xu M; Abou-Hamdan H; Tang M; Désaubry L; Song Z
    Autophagy; 2020 Mar; 16(3):419-434. PubMed ID: 31177901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy.
    Thangaraj A; Periyasamy P; Liao K; Bendi VS; Callen S; Pendyala G; Buch S
    Autophagy; 2018; 14(9):1596-1619. PubMed ID: 29966509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitophagy in degenerative joint diseases.
    Sun K; Jing X; Guo J; Yao X; Guo F
    Autophagy; 2021 Sep; 17(9):2082-2092. PubMed ID: 32967533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.