BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30741984)

  • 1. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau.
    Jing W; Zhang P; Zhao X
    Sci Rep; 2019 Feb; 9(1):1765. PubMed ID: 30741984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging Terrestrial Water Storage Anomaly During GRACE/GRACE-FO Gap Using SSA Method: A Case Study in China.
    Li W; Wang W; Zhang C; Wen H; Zhong Y; Zhu Y; Li Z
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31554328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of GRACE mascon solutions using in-situ geodetic data: The case of hydrologic-induced crust displacement in the Yangtze River Basin.
    Wang L; Chen C; Ma X; Fu Z; Zheng Y; Peng Z
    Sci Total Environ; 2020 Mar; 707():135606. PubMed ID: 31780149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins.
    Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V
    Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin.
    Chao N; Li F; Yu N; Chen G; Wang Z; Ouyang G; Yeh PJ
    Sci Total Environ; 2023 Jun; 879():162886. PubMed ID: 36933709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the spatiotemporal terrestrial water storage changes in the Yarlung Zangbo River Basin by applying the P-LSA and EOF methods to GRACE data.
    Zhang H; Zhang LL; Li J; An RD; Deng Y
    Sci Total Environ; 2020 Apr; 713():136274. PubMed ID: 32019005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations.
    Chen H; Zhang W; Nie N; Guo Y
    Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating GRACE terrestrial water storage anomaly using an improved point mass solution.
    Ferreira V; Yong B; Montecino H; Ndehedehe CE; Seitz K; Kutterer H; Yang K
    Sci Data; 2023 Apr; 10(1):234. PubMed ID: 37087527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods.
    Rateb A; Kuo CY; Imani M; Tseng KH; Lan WH; Ching KE; Tseng TP
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing drought events occurred in the Yangtze River Basin from 1979 to 2017 by reconstructing water storage anomalies based on GRACE and meteorological data.
    Zheng S; Zhang Z; Yan H; Zhao Y; Li Z
    Sci Total Environ; 2023 Apr; 868():161755. PubMed ID: 36690099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data.
    Scanlon BR; Zhang Z; Save H; Sun AY; Müller Schmied H; van Beek LPH; Wiese DN; Wada Y; Long D; Reedy RC; Longuevergne L; Döll P; Bierkens MFP
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1080-E1089. PubMed ID: 29358394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning model for reconstructing centenary water storage changes in the Yangtze River Basin.
    Wang J; Shen Y; Awange JL; Yang L
    Sci Total Environ; 2023 Dec; 905():167030. PubMed ID: 37704127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging the gap between GRACE and GRACE-FO missions with deep learning aided water storage simulations.
    Uz M; Atman KG; Akyilmaz O; Shum CK; Keleş M; Ay T; Tandoğdu B; Zhang Y; Mercan H
    Sci Total Environ; 2022 Jul; 830():154701. PubMed ID: 35337878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO.
    Fatolazadeh F; Goïta K
    Sci Total Environ; 2021 Jul; 779():146435. PubMed ID: 34030259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India.
    Satish Kumar K; Venkata Rathnam E; Sridhar V
    Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing a long-term water storage-based drought index in the Yangtze River Basin.
    Zhong Y; Hu E; Wu Y; An Q; Wang C; Bai H; Gao W
    Sci Total Environ; 2023 Jul; 883():163403. PubMed ID: 37059147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China.
    Sun Z; Zhu X; Pan Y; Zhang J; Liu X
    Sci Total Environ; 2018 Sep; 634():727-738. PubMed ID: 29649717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought characterization over Indian sub-continent using GRACE-based indices.
    Rawat S; Ganapathy A; Agarwal A
    Sci Rep; 2022 Sep; 12(1):15432. PubMed ID: 36104454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater recharge estimation using in-situ and GRACE observations in the eastern region of the United Arab Emirates.
    Alghafli K; Shi X; Sloan W; Shamsudduha M; Tang Q; Sefelnasr A; Ebraheem AA
    Sci Total Environ; 2023 Apr; 867():161489. PubMed ID: 36634784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.