These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30742167)

  • 1. Water super-repellent behavior of semicircular micro/nanostructured surfaces.
    Tie L; Guo Z; Liang Y; Liu W
    Nanoscale; 2019 Feb; 11(8):3725-3732. PubMed ID: 30742167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Manipulated Underwater-Oil Adhesion Wettability Behavior on the Micro/Nanoscale Semicircular Structure and Related Thermodynamic Analysis.
    Tie L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2015 May; 7(19):10641-9. PubMed ID: 25919443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces.
    Liu HH; Zhang HY; Li W
    Langmuir; 2011 May; 27(10):6260-7. PubMed ID: 21495711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic wetting properties on various shape of parallel grooved microstructure.
    Tie L; Guo Z; Liu W
    J Colloid Interface Sci; 2015 Sep; 453():142-150. PubMed ID: 25982937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ wetting state transition on micro- and nanostructured surfaces at high temperature.
    Wang J; Liu M; Ma R; Wang Q; Jiang L
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15198-208. PubMed ID: 25141234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate wetting state at nano/microstructured surfaces.
    Nagayama G; Zhang D
    Soft Matter; 2020 Apr; 16(14):3514-3521. PubMed ID: 32215385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect.
    Lin HP; Chen LJ
    J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting States and Departure Diameters of Bubbles on Micro-/Nanostructured Surfaces.
    Li J; Gong S; Zhang L; Cheng P; Ma X; Hong F
    Langmuir; 2022 Mar; 38(10):3180-3188. PubMed ID: 35240036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling states of water droplets on nanostructured surfaces by design.
    Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC
    Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.
    Tie L; Guo Z; Li W
    J Colloid Interface Sci; 2014 Dec; 436():19-28. PubMed ID: 25265581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces.
    Li J; Wang W; Mei X; Pan A
    ACS Omega; 2020 Nov; 5(44):28776-28783. PubMed ID: 33195931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces.
    Murakami D; Jinnai H; Takahara A
    Langmuir; 2014 Mar; 30(8):2061-7. PubMed ID: 24494786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.