These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30742271)

  • 21. Low-cost motility tracking system (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation.
    Lynch AE; Triajianto J; Routledge E
    PLoS One; 2014; 9(8):e103547. PubMed ID: 25121722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Culturing MDCK cells in three dimensions for analyzing intracellular dynamics.
    Elia N; Lippincott-Schwartz J
    Curr Protoc Cell Biol; 2009 Jun; Chapter 4():4.22.1-4.22.18. PubMed ID: 19499508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blastomere injection of cleavage-stage zebrafish embryos and imaging of labeled cells.
    England SJ; Adams RJ
    Cold Spring Harb Protoc; 2011 Aug; 2011(8):958-66. PubMed ID: 21807850
    [No Abstract]   [Full Text] [Related]  

  • 24. Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte.
    Hashimoto H; Yuasa S; Tabata H; Tohyama S; Hayashiji N; Hattori F; Muraoka N; Egashira T; Okata S; Yae K; Seki T; Nishiyama T; Nakajima K; Sakaue-Sawano A; Miyawaki A; Fukuda K
    J Mol Cell Cardiol; 2014 Jul; 72():241-9. PubMed ID: 24704900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Tumor Models and Time-Lapse Analysis by Multidimensional Microscopy.
    Scholz D; Itasaki N
    Methods Mol Biol; 2016; 1379():181-8. PubMed ID: 26608300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-lapse imaging of fluorescently labeled live cells in the embryonic mammalian forebrain.
    Noctor SC
    Cold Spring Harb Protoc; 2011 Nov; 2011(11):1350-61. PubMed ID: 22046042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization and quantitative analyses for mouse embryonic stem cell tracking by manipulating hierarchical data structures using time-lapse confocal microscopy images.
    Yokota H; Abe K; Chang YH; Cho D; Tsai MD; Huang PH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2944-2947. PubMed ID: 34891862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture.
    Johnson TV; Oglesby EN; Steinhart MR; Cone-Kimball E; Jefferys J; Quigley HA
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):253-64. PubMed ID: 26811145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Live confocal imaging of Arabidopsis flower buds.
    Prunet N; Jack TP; Meyerowitz EM
    Dev Biol; 2016 Nov; 419(1):114-120. PubMed ID: 26992363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-lapse imaging of membrane traffic in living cells.
    Snapp EL; Lajoie P
    Cold Spring Harb Protoc; 2011 Nov; 2011(11):1362-5. PubMed ID: 22046037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confocal time lapse imaging as an efficient method for the cytocompatibility evaluation of dental composites.
    Attik GN; Gritsch K; Colon P; Grosgogeat B
    J Vis Exp; 2014 Nov; (93):e51949. PubMed ID: 25406737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.
    Mangan A; Prekeris R
    Methods Mol Biol; 2015; 1298():181-6. PubMed ID: 25800842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Airyscan super-resolution microscopy of mitochondrial morphology and dynamics in living tumor cells.
    Kolossov VL; Sivaguru M; Huff J; Luby K; Kanakaraju K; Gaskins HR
    Microsc Res Tech; 2018 Feb; 81(2):115-128. PubMed ID: 29131445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation.
    Seiler C; Gazdhar A; Reyes M; Benneker LM; Geiser T; Siebenrock KA; Gantenbein-Ritter B
    J Tissue Eng Regen Med; 2014 Sep; 8(9):737-46. PubMed ID: 22815264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ex Utero Culture and Imaging of Mouse Embryos.
    Nowotschin S; Garg V; Piliszek A; Hadjantonakis AK
    Methods Mol Biol; 2019; 1920():163-182. PubMed ID: 30737692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.
    Puah WC; Wasser M
    Methods; 2016 Mar; 96():103-117. PubMed ID: 26431669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans.
    Kelley LC; Wang Z; Hagedorn EJ; Wang L; Shen W; Lei S; Johnson SA; Sherwood DR
    Nat Protoc; 2017 Oct; 12(10):2081-2096. PubMed ID: 28880279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring.
    Pribenszky C; Mátyás S; Kovács P; Losonczi E; Zádori J; Vajta G
    Reprod Biomed Online; 2010 Oct; 21(4):533-6. PubMed ID: 20638906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging tools for analysis of the ureteric tree in the developing mouse kidney.
    Cullen-McEwen LA; Young RJ; Fricout G; Jeulin D; Harper IS; Costantini F; Bertram JF
    Methods Mol Biol; 2014; 1075():305-20. PubMed ID: 24052360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term time-lapse microscopy of C. elegans post-embryonic development.
    Gritti N; Kienle S; Filina O; van Zon JS
    Nat Commun; 2016 Aug; 7():12500. PubMed ID: 27558523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.