These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30742715)
1. Convergent xylem widening among organs across diverse woody seedlings. Zhong M; Castro-Díez P; Puyravaud JP; Sterck FJ; Cornelissen JHC New Phytol; 2019 Jun; 222(4):1873-1882. PubMed ID: 30742715 [TBL] [Abstract][Full Text] [Related]
2. Allometric co-variation of xylem and stomata across diverse woody seedlings. Zhong M; Cerabolini BEL; Castro-Díez P; Puyravaud JP; Cornelissen JHC Plant Cell Environ; 2020 Sep; 43(9):2301-2310. PubMed ID: 32542660 [TBL] [Abstract][Full Text] [Related]
3. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Castro-Díez P; Puyravaud JP; Cornelissen JH; Villar-Salvador P Oecologia; 1998 Aug; 116(1-2):57-66. PubMed ID: 28308541 [TBL] [Abstract][Full Text] [Related]
4. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Schuldt B; Leuschner C; Brock N; Horna V Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668 [TBL] [Abstract][Full Text] [Related]
5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species. Modrzyński J; Chmura DJ; Tjoelker MG Tree Physiol; 2015 Aug; 35(8):879-93. PubMed ID: 26116924 [TBL] [Abstract][Full Text] [Related]
6. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Blackman CJ; Gleason SM; Cook AM; Chang Y; Laws CA; Westoby M Ann Bot; 2018 Jun; 122(1):59-67. PubMed ID: 29668853 [TBL] [Abstract][Full Text] [Related]
7. Constant theoretical conductance via changes in vessel diameter and number with height growth in Moringa oleifera. Echeverría A; Anfodillo T; Soriano D; Rosell JA; Olson ME J Exp Bot; 2019 Oct; 70(20):5765-5772. PubMed ID: 31328237 [TBL] [Abstract][Full Text] [Related]
8. Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Maherali H; Moura CE; Caldeira MC; Willson CJ; Jackson RB Plant Cell Environ; 2006 Apr; 29(4):571-83. PubMed ID: 17080608 [TBL] [Abstract][Full Text] [Related]
9. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry. Fu X; Meinzer FC; Woodruff DR; Liu YY; Smith DD; McCulloh KA; Howard AR Plant Cell Environ; 2019 Jul; 42(7):2245-2258. PubMed ID: 30820970 [TBL] [Abstract][Full Text] [Related]
10. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Sun S; Jin D; Shi P Ann Bot; 2006 Jan; 97(1):97-107. PubMed ID: 16254019 [TBL] [Abstract][Full Text] [Related]
11. Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Franco AC; Campanello PI; Villalobos-Vega R; Bustamante M; Miralles-Wilhelm F Plant Cell Environ; 2006 Dec; 29(12):2153-67. PubMed ID: 17081249 [TBL] [Abstract][Full Text] [Related]
12. Scaling relationships and vessel packing in petioles. Ray DM; Jones CS Am J Bot; 2018 Apr; 105(4):667-676. PubMed ID: 29664993 [TBL] [Abstract][Full Text] [Related]
13. Comparison of phloem and xylem hydraulic architecture in Picea abies stems. Jyske T; Hölttä T New Phytol; 2015 Jan; 205(1):102-15. PubMed ID: 25124270 [TBL] [Abstract][Full Text] [Related]
15. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types. Duursma RA; Falster DS New Phytol; 2016 Oct; 212(2):368-76. PubMed ID: 27241462 [TBL] [Abstract][Full Text] [Related]
16. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. Blackman CJ; Brodribb TJ; Jordan GJ New Phytol; 2010 Dec; 188(4):1113-23. PubMed ID: 20738785 [TBL] [Abstract][Full Text] [Related]
17. The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. Arias NS; Scholz FG; Goldstein G; Bucci SJ Tree Physiol; 2017 Sep; 37(9):1251-1262. PubMed ID: 28633378 [TBL] [Abstract][Full Text] [Related]
18. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species. Meng F; Zhang G; Li X; Niklas KJ; Sun S Tree Physiol; 2015 Jun; 35(6):621-31. PubMed ID: 25813701 [TBL] [Abstract][Full Text] [Related]
19. Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae). Levionnois S; Coste S; Nicolini E; Stahl C; Morel H; Heuret P Tree Physiol; 2020 Feb; 40(2):245-258. PubMed ID: 31976541 [TBL] [Abstract][Full Text] [Related]
20. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species. Rodríguez-Calcerrada J; Li M; López R; Cano FJ; Oleksyn J; Atkin OK; Pita P; Aranda I; Gil L New Phytol; 2017 Jan; 213(2):597-610. PubMed ID: 27575435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]