These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30742764)

  • 41. Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition.
    Hessling B; Herbst J; Rammelsberg R; Gerwert K
    Biophys J; 1997 Oct; 73(4):2071-80. PubMed ID: 9336202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser.
    Nogly P; Weinert T; James D; Carbajo S; Ozerov D; Furrer A; Gashi D; Borin V; Skopintsev P; Jaeger K; Nass K; Båth P; Bosman R; Koglin J; Seaberg M; Lane T; Kekilli D; Brünle S; Tanaka T; Wu W; Milne C; White T; Barty A; Weierstall U; Panneels V; Nango E; Iwata S; Hunter M; Schapiro I; Schertler G; Neutze R; Standfuss J
    Science; 2018 Jul; 361(6398):. PubMed ID: 29903883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.
    Zadok U; Asato AE; Sheves M
    Biochemistry; 2005 Jun; 44(23):8479-85. PubMed ID: 15938637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.
    Herbst J; Heyne K; Diller R
    Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of mutagenetic substitution of prolines on the rate of deprotonation and reprotonation of the Schiff base during the photocycle of bacteriorhodopsin.
    Zhang YN; el-Sayed MA; Stern LJ; Marti T; Mogi T; Khorana HG
    Photochem Photobiol; 1993 Jun; 57(6):1027-31. PubMed ID: 8367532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A covalent link between the chromophore and the protein backbone of bacteriorhodopsin is not required for forming a photochemically active pigment analogous to the wild type.
    Friedman N; Druckmann S; Lanyi J; Needleman R; Lewis A; Ottolenghi M; Sheves M
    Biochemistry; 1994 Mar; 33(8):1971-6. PubMed ID: 8117653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of the charge at D85 on the initial steps in the photocycle of bacteriorhodopsin.
    Sobotta C; Braun M; Tittor J; Oesterhelt D; Zinth W
    Biophys J; 2009 Jul; 97(1):267-76. PubMed ID: 19580764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin.
    Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M
    J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle.
    Balashov SP; Govindjee R; Kono M; Imasheva E; Lukashev E; Ebrey TG; Crouch RK; Menick DR; Feng Y
    Biochemistry; 1993 Oct; 32(39):10331-43. PubMed ID: 8399176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic Coupling of Tyrosine 185 with the Bacteriorhodopsin Photocycle, as Revealed by Chemical Shifts, Assisted AF-QM/MM Calculations and Molecular Dynamic Simulations.
    Chen S; Ding X; Sun C; Watts A; He X; Zhao X
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments.
    Dencher NA; Kohl KD; Heyn MP
    Biochemistry; 1983 Mar; 22(6):1323-34. PubMed ID: 6838856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
    Ihara K; Amemiya T; Miyashita Y; Mukohata Y
    Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Backbone modification of retinal induces protein-like excited state dynamics in solution.
    Sovdat T; Bassolino G; Liebel M; Schnedermann C; Fletcher SP; Kukura P
    J Am Chem Soc; 2012 May; 134(20):8318-20. PubMed ID: 22536821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle.
    Brown LS; Bonet L; Needleman R; Lanyi JK
    Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle.
    Lanyi JK; Schobert B
    J Mol Biol; 2003 Apr; 328(2):439-50. PubMed ID: 12691752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle.
    Brown LS; Váró G; Needleman R; Lanyi JK
    Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.