These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 30742765)
1. Point Mutation of Anabaena Sensory Rhodopsin Enhances Ground-State Hydrogen Out-of-Plane Wag Raman Activity. Roy PP; Abe-Yoshizumi R; Kandori H; Buckup T J Phys Chem Lett; 2019 Mar; 10(5):1012-1017. PubMed ID: 30742765 [TBL] [Abstract][Full Text] [Related]
2. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Roy PP; Kato Y; Abe-Yoshizumi R; Pieri E; Ferré N; Kandori H; Buckup T Phys Chem Chem Phys; 2018 Dec; 20(48):30159-30173. PubMed ID: 30484447 [TBL] [Abstract][Full Text] [Related]
3. Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. Agathangelou D; Orozco-Gonzalez Y; Del Carmen Marín M; Roy PP; Brazard J; Kandori H; Jung KH; Léonard J; Buckup T; Ferré N; Olivucci M; Haacke S Faraday Discuss; 2018 Apr; 207(0):55-75. PubMed ID: 29388996 [TBL] [Abstract][Full Text] [Related]
4. Cytoplasmic shuttling of protons in anabaena sensory rhodopsin: implications for signaling mechanism. Shi L; Yoon SR; Bezerra AG; Jung KH; Brown LS J Mol Biol; 2006 May; 358(3):686-700. PubMed ID: 16530786 [TBL] [Abstract][Full Text] [Related]
5. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Kawanabe A; Furutani Y; Jung KH; Kandori H Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171 [TBL] [Abstract][Full Text] [Related]
6. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
7. Probing ultrafast photochemistry of retinal proteins in the near-IR: bacteriorhodopsin and anabaena sensory rhodopsin vs retinal protonated Schiff base in solution. Wand A; Loevsky B; Friedman N; Sheves M; Ruhman S J Phys Chem B; 2013 Apr; 117(16):4670-9. PubMed ID: 23140223 [TBL] [Abstract][Full Text] [Related]
8. 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin. Cheminal A; Léonard J; Kim SY; Jung KH; Kandori H; Haacke S Phys Chem Chem Phys; 2015 Oct; 17(38):25429-39. PubMed ID: 26365012 [TBL] [Abstract][Full Text] [Related]
9. FTIR study of the L intermediate of Anabaena sensory rhodopsin: structural changes in the cytoplasmic region. Kawanabe A; Furutani Y; Yoon SR; Jung KH; Kandori H Biochemistry; 2008 Sep; 47(38):10033-40. PubMed ID: 18759456 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric toggling of a natural photoswitch: ultrafast spectroscopy of Anabaena sensory rhodopsin. Wand A; Rozin R; Eliash T; Jung KH; Sheves M; Ruhman S J Am Chem Soc; 2011 Dec; 133(51):20922-32. PubMed ID: 22066688 [TBL] [Abstract][Full Text] [Related]
11. Conformational changes in the photocycle of Anabaena sensory rhodopsin: absence of the Schiff base counterion protonation signal. Bergo VB; Ntefidou M; Trivedi VD; Amsden JJ; Kralj JM; Rothschild KJ; Spudich JL J Biol Chem; 2006 Jun; 281(22):15208-14. PubMed ID: 16537532 [TBL] [Abstract][Full Text] [Related]
12. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. Choi AR; Kim SY; Yoon SR; Bae K; Jung KH J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365 [TBL] [Abstract][Full Text] [Related]
13. CpHMD-Then-QM/MM Identification of the Amino Acids Responsible for the Anabaena Sensory Rhodopsin pH-Dependent Electronic Absorption Spectrum. Pieri E; Ledentu V; Sahlin M; Dehez F; Olivucci M; Ferré N J Chem Theory Comput; 2019 Aug; 15(8):4535-4546. PubMed ID: 31264415 [TBL] [Abstract][Full Text] [Related]
14. pH dependence of Anabaena sensory rhodopsin: retinal isomer composition, rate of dark adaptation, and photochemistry. Rozin R; Wand A; Jung KH; Ruhman S; Sheves M J Phys Chem B; 2014 Jul; 118(30):8995-9006. PubMed ID: 25003828 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory. Schapiro I; Ruhman S Biochim Biophys Acta; 2014 May; 1837(5):589-97. PubMed ID: 24099700 [TBL] [Abstract][Full Text] [Related]
16. Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights. Dong B; Sánchez-Magraner L; Luecke H Biophys J; 2016 Sep; 111(5):963-72. PubMed ID: 27602724 [TBL] [Abstract][Full Text] [Related]
17. Expression of Anabaena sensory rhodopsin is influenced by different codons of seven residues at the N-terminal region. Tsogbadrakh O; Choi AR; Jung KH Protein Expr Purif; 2018 Nov; 151():1-8. PubMed ID: 29793033 [TBL] [Abstract][Full Text] [Related]
19. Acceleration of the Z to E photoisomerization of penta-2,4-dieniminium by hydrogen out-of-plane motion: theoretical study on a model system of retinal protonated Schiff base. Sumita M; Ryazantsev MN; Saito K Phys Chem Chem Phys; 2009 Aug; 11(30):6406-14. PubMed ID: 19809672 [TBL] [Abstract][Full Text] [Related]
20. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin. Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]