BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30742903)

  • 21. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae.
    Carmelo V; Santos H; Sá-Correia I
    Biochim Biophys Acta; 1997 Apr; 1325(1):63-70. PubMed ID: 9106483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein targeting to the yeast vacuole.
    Rothman JH; Yamashiro CT; Kane PM; Stevens TH
    Trends Biochem Sci; 1989 Aug; 14(8):347-50. PubMed ID: 2529676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of the yeast vacuole and its role in autophagy.
    Thumm M
    Microsc Res Tech; 2000 Dec; 51(6):563-72. PubMed ID: 11169858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology.
    Abe F; Horikoshi K
    Extremophiles; 1998 Aug; 2(3):223-8. PubMed ID: 9783169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation.
    Nguyen TD; Walker ME; Gardner JM; Jiranek V
    Food Microbiol; 2018 Apr; 70():262-268. PubMed ID: 29173635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defects in intracellular trafficking and endocytic/vacuolar acidification determine the efficiency of endocytotic DNA uptake in yeast.
    Riechers SP; Stahl U; Lang C
    J Cell Biochem; 2009 Feb; 106(2):327-36. PubMed ID: 19115284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae.
    Bode HP; Dumschat M; Garotti S; Fuhrmann GF
    Eur J Biochem; 1995 Mar; 228(2):337-42. PubMed ID: 7705347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae.
    Maruyama Y; Ito T; Kodama H; Matsuura A
    PLoS One; 2016; 11(3):e0151894. PubMed ID: 26991662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction among Btn1p, Btn2p, and Ist2p reveals potential interplay among the vacuole, amino acid levels, and ion homeostasis in the yeast Saccharomyces cerevisiae.
    Kim Y; Chattopadhyay S; Locke S; Pearce DA
    Eukaryot Cell; 2005 Feb; 4(2):281-8. PubMed ID: 15701790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.
    Ding J; Holzwarth G; Bradford CS; Cooley B; Yoshinaga AS; Patton-Vogt J; Abeliovich H; Penner MH; Bakalinsky AT
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8667-80. PubMed ID: 26051671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension.
    Stephan J; Franke J; Ehrenhofer-Murray AE
    Aging Cell; 2013 Aug; 12(4):574-83. PubMed ID: 23521895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae.
    Matsuura K; Takagi H
    J Biosci Bioeng; 2005 Nov; 100(5):538-44. PubMed ID: 16384793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role.
    Kawano-Kawada M; Kakinuma Y; Sekito T
    Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemiosmotic coupling of ion transport in the yeast vacuole: its role in acidification inside organelles.
    Wada Y; Anraku Y
    J Bioenerg Biomembr; 1994 Dec; 26(6):631-7. PubMed ID: 7721725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional genomics of dietary restriction and longevity in yeast.
    Campos SE; DeLuna A
    Mech Ageing Dev; 2019 Apr; 179():36-43. PubMed ID: 30790575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome.
    Baba M; Osumi M; Scott SV; Klionsky DJ; Ohsumi Y
    J Cell Biol; 1997 Dec; 139(7):1687-95. PubMed ID: 9412464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein sorting in yeast: the role of the vacuolar proton-translocating ATPase.
    Kane PM; Yamashiro CT; Rothman JH; Stevens TH
    J Cell Sci Suppl; 1989; 11():161-78. PubMed ID: 2533204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuoles during infection.
    Kodama Y; Fujishima M
    Protoplasma; 2005 Oct; 225(3-4):191-203. PubMed ID: 15997335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of monovalent cations on yeast cytoplasmic and vacuolar pH.
    Calahorra M; Martínez GA; Hernández-Cruz A; Peña A
    Yeast; 1998 Apr; 14(6):501-15. PubMed ID: 9605501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidification.
    Wada Y; Ohsumi Y; Anraku Y
    Biochim Biophys Acta; 1992 Aug; 1101(3):296-302. PubMed ID: 1386528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.