These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 30743061)
1. Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon. Zhang R; Neu TR; Blanchard V; Vera M; Sand W N Biotechnol; 2019 Jul; 51():21-30. PubMed ID: 30743061 [TBL] [Abstract][Full Text] [Related]
2. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Zhang RY; Neu TR; Bellenberg S; Kuhlicke U; Sand W; Vera M Microb Biotechnol; 2015 May; 8(3):448-61. PubMed ID: 25488256 [TBL] [Abstract][Full Text] [Related]
3. Importance of Initial Interfacial Steps during Chalcopyrite Bioleaching by a Thermoacidophilic Archaeon. Safar C; Castro C; Donati E Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32640593 [TBL] [Abstract][Full Text] [Related]
4. Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis. Zhang R; Neu TR; Li Q; Blanchard V; Zhang Y; Schippers A; Sand W Front Microbiol; 2019; 10():896. PubMed ID: 31133998 [TBL] [Abstract][Full Text] [Related]
5. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus. Castro C; Zhang R; Liu J; Bellenberg S; Neu TR; Donati E; Sand W; Vera M Res Microbiol; 2016 Sep; 167(7):604-12. PubMed ID: 27388200 [TBL] [Abstract][Full Text] [Related]
6. Mechanical and chemical studies on EPS from Sulfobacillus thermosulfidooxidans: from planktonic to biofilm cells. Li Q; Sand W Colloids Surf B Biointerfaces; 2017 May; 153():34-40. PubMed ID: 28213285 [TBL] [Abstract][Full Text] [Related]
7. Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes. Li Q; Becker T; Zhang R; Xiao T; Sand W Colloids Surf B Biointerfaces; 2019 Jan; 173():639-646. PubMed ID: 30368211 [TBL] [Abstract][Full Text] [Related]
8. Production and Biotechnological Potential of Extracellular Polymeric Substances from Sponge-Associated Antarctic Bacteria. Caruso C; Rizzo C; Mangano S; Poli A; Di Donato P; Finore I; Nicolaus B; Di Marco G; Michaud L; Lo Giudice A Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180360 [TBL] [Abstract][Full Text] [Related]
9. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195 [TBL] [Abstract][Full Text] [Related]
10. Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Zhang R; Neu TR; Zhang Y; Bellenberg S; Kuhlicke U; Li Q; Sand W; Vera M Appl Microbiol Biotechnol; 2015 Sep; 99(17):7343-56. PubMed ID: 26169631 [TBL] [Abstract][Full Text] [Related]
11. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. Tao H; Dongwei L Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of biofilm formation during anaerobic digestion of organic waste. Langer S; Schropp D; Bengelsdorf FR; Othman M; Kazda M Anaerobe; 2014 Oct; 29():44-51. PubMed ID: 24342346 [TBL] [Abstract][Full Text] [Related]
13. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium. Fang X; Sun S; Liao X; Li S; Zhou S; Gan Q; Zeng L; Guan Z Sci Total Environ; 2022 Feb; 806(Pt 1):150234. PubMed ID: 34562759 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the EPS from a thermophilic corrosive consortium. Atalah J; Blamey L; Gelineo-Albersheim I; Blamey JM Biofouling; 2019 Nov; 35(10):1075-1082. PubMed ID: 31899955 [TBL] [Abstract][Full Text] [Related]
15. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius. Jachlewski S; Jachlewski WD; Linne U; Bräsen C; Wingender J; Siebers B Front Bioeng Biotechnol; 2015; 3():123. PubMed ID: 26380258 [TBL] [Abstract][Full Text] [Related]
16. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. Huang Z; Feng S; Tong Y; Yang H J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798 [TBL] [Abstract][Full Text] [Related]
17. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Bellenberg S; Díaz M; Noël N; Sand W; Poetsch A; Guiliani N; Vera M Res Microbiol; 2014 Nov; 165(9):773-81. PubMed ID: 25172572 [TBL] [Abstract][Full Text] [Related]
18. Generation behavior of extracellular polymeric substances and its correlation with extraction efficiency of valuable metals and change of process parameters during bioleaching of spent petroleum catalyst. Chu H; Wang J; Tian B; Qian C; Niu T; Qi S; Yang Y; Ge Y; Dai X; Xin B Chemosphere; 2021 Jul; 275():130006. PubMed ID: 33639548 [TBL] [Abstract][Full Text] [Related]
19. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y; Liu X; Dong W; Liang Y; Niu J; Gu Y; Ma L; Hao X; Zhang X; Xu Z; Yin H Arch Microbiol; 2017 Jul; 199(5):757-766. PubMed ID: 28260145 [TBL] [Abstract][Full Text] [Related]
20. Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces. Gusnaniar ; Hizal F; Choi CH; Sjollema J; Nuryastuti T; Rustema-Abbing M; Rozenbaum RT; van der Mei HC; Busscher HJ; Wessel SW Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]