These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30743255)
1. Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices. Zhang M; Wang H; Su Z; Tian C; Zhang JT; Wang Y; Yan F; Mai Z; Xing G Nanotechnology; 2019 Jun; 30(24):245204. PubMed ID: 30743255 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Thermal Conductivity of Graphene Nanoplatelet-Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. Hamidinejad SM; Chu RKM; Zhao B; Park CB; Filleter T ACS Appl Mater Interfaces; 2018 Jan; 10(1):1225-1236. PubMed ID: 29226667 [TBL] [Abstract][Full Text] [Related]
3. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity. Zeng X; Sun J; Yao Y; Sun R; Xu JB; Wong CP ACS Nano; 2017 May; 11(5):5167-5178. PubMed ID: 28402626 [TBL] [Abstract][Full Text] [Related]
4. Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites. Yu L; Park JS; Lim YS; Lee CS; Shin K; Moon HJ; Yang CM; Lee YS; Han JH Nanotechnology; 2013 Apr; 24(15):155604. PubMed ID: 23529153 [TBL] [Abstract][Full Text] [Related]
5. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Kim HS; Bae HS; Yu J; Kim SY Sci Rep; 2016 May; 6():26825. PubMed ID: 27220415 [TBL] [Abstract][Full Text] [Related]
6. Effect of Graphite Nanoplatelet Size and Dispersion on the Thermal and Mechanical Properties of Epoxy-Based Nanocomposites. Agustina E; Goak JC; Lee S; Kim Y; Hong SC; Seo Y; Lee N Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110912 [TBL] [Abstract][Full Text] [Related]
7. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers. Tian X; Itkis ME; Haddon RC Sci Rep; 2015 Aug; 5():13108. PubMed ID: 26279183 [TBL] [Abstract][Full Text] [Related]
8. Micro-Finned Nanocomposite Films for Enhanced Transport Properties: Graphite Nanoplatelet-Filled Linear Low-Density Polyethylene. Kanhere SV; Güzdemir Ö; Ogale AA Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006136 [TBL] [Abstract][Full Text] [Related]
9. Multilayered graphene/boron nitride/thermoplastic polyurethane composite films with high thermal conductivity, stretchability, and washability for adjustable-cooling smart clothes. Soong YC; Chiu CW J Colloid Interface Sci; 2021 Oct; 599():611-619. PubMed ID: 33979744 [TBL] [Abstract][Full Text] [Related]
10. Fused Deposition Modeling of Isotactic Polypropylene/Graphene Nanoplatelets Composites: Achieving Enhanced Thermal Conductivity through Filler Orientation. Wang Z; Yang Q; Zheng X; Zhang S; He P; Han R; Chen G Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543378 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics. Feng CP; Chen LB; Tian GL; Wan SS; Bai L; Bao RY; Liu ZY; Yang MB; Yang W ACS Appl Mater Interfaces; 2019 May; 11(20):18739-18745. PubMed ID: 31026137 [TBL] [Abstract][Full Text] [Related]
13. High temperature thermal management with boron nitride nanosheets. Wang Y; Xu L; Yang Z; Xie H; Jiang P; Dai J; Luo W; Yao Y; Hitz E; Yang R; Yang B; Hu L Nanoscale; 2017 Dec; 10(1):167-173. PubMed ID: 29199302 [TBL] [Abstract][Full Text] [Related]
14. A Thermochromic, Viscoelastic Nacre-like Nanocomposite for the Smart Thermal Management of Planar Electronics. Wang J; Yang T; Wang Z; Sun X; An M; Liu D; Zhao C; Zhang G; Lei W Nanomicro Lett; 2023 Jul; 15(1):170. PubMed ID: 37407863 [TBL] [Abstract][Full Text] [Related]
15. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433 [TBL] [Abstract][Full Text] [Related]
16. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure. Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051 [TBL] [Abstract][Full Text] [Related]
17. Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet. Jang JU; Nam HE; So SO; Lee H; Kim GS; Kim SY; Kim SH Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054729 [TBL] [Abstract][Full Text] [Related]
18. A Novel Thermal Interface Material Composed of Vertically Aligned Boron Nitride and Graphite Films for Ultrahigh Through-Plane Thermal Conductivity. Bashir A; Niu H; Maqbool M; Usman A; Lv R; Ashraf Z; Cheng M; Bai S Small Methods; 2024 Mar; ():e2301788. PubMed ID: 38507731 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional Liquid Metal-Bridged Graphite Nanoplatelets/Aramid Nanofiber Film for Thermal Management. Xie J; Zhou G; Sun Y; Zhang F; Kang F; Li B; Zhao Y; Zhang Y; Feng W; Zheng Q Small; 2024 May; 20(18):e2305163. PubMed ID: 38048535 [TBL] [Abstract][Full Text] [Related]
20. High Thermal Conductivity and Anisotropy Values of Aligned Graphite Flakes/Copper Foil Composites. Zeng F; Xue C; Ma H; Lin CT; Yu J; Jiang N Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]