These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 30743259)
1. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Zhou M; Lee BH; Tan YJ; Tan LP Biofabrication; 2019 Mar; 11(2):025011. PubMed ID: 30743259 [TBL] [Abstract][Full Text] [Related]
2. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
3. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
4. A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl. Zhou M; Lee BH; Tan LP Int J Bioprint; 2017; 3(2):003. PubMed ID: 33094187 [TBL] [Abstract][Full Text] [Related]
5. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
7. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Young AT; White OC; Daniele MA Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384 [TBL] [Abstract][Full Text] [Related]
8. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
9. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
10. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
11. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
12. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
13. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607 [TBL] [Abstract][Full Text] [Related]
15. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
16. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Stratesteffen H; Köpf M; Kreimendahl F; Blaeser A; Jockenhoevel S; Fischer H Biofabrication; 2017 Sep; 9(4):045002. PubMed ID: 28795951 [TBL] [Abstract][Full Text] [Related]
17. Dual Crosslinked Gelatin Methacryloyl Hydrogels for Photolithography and 3D Printing. Basara G; Yue X; Zorlutuna P Gels; 2019 Jul; 5(3):. PubMed ID: 31277240 [TBL] [Abstract][Full Text] [Related]
18. Decellularized matrix bioink with gelatin methacrylate for simultaneous improvements in printability and biofunctionality. Seok JM; Ahn M; Kim D; Lee JS; Lee D; Choi MJ; Yeo SJ; Lee JH; Lee K; Kim BS; Park SA Int J Biol Macromol; 2024 Mar; 262(Pt 2):130194. PubMed ID: 38360222 [TBL] [Abstract][Full Text] [Related]
19. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
20. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]