These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30743507)

  • 1. Use of Gibberellic Acid for Management of Bunch Rot on Chardonnay and Vignoles Grape.
    Hed B; Ngugi HK; Travis JW
    Plant Dis; 2011 Mar; 95(3):269-278. PubMed ID: 30743507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship Between Cluster Compactness and Bunch Rot in Vignoles Grapes.
    Hed B; Ngugi HK; Travis JW
    Plant Dis; 2009 Nov; 93(11):1195-1201. PubMed ID: 30754587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibberellin Application Improved Bunch Rot Control of Vignoles Grape, but Response to Mechanical Defoliation Varied Between Training Systems.
    Hed B; Centinari M
    Plant Dis; 2021 Feb; 105(2):339-345. PubMed ID: 32755368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical leaf removal for improved Botrytis bunch rot control in
    Hed B; Centinari M
    Plant Dis; 2024 Jun; ():. PubMed ID: 38902880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotting Grapes Don't Improve with Age: Cluster Rot Disease Complexes, Management, and Future Prospects.
    Crandall SG; Spychalla J; Crouch UT; Acevedo FE; Naegele RP; Miles TD
    Plant Dis; 2022 Aug; 106(8):2013-2025. PubMed ID: 35108071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of gibberellin applications before flowering on the phenotype, ripening, and flavonoid compounds of Syrah grape berries.
    Xie S; Liu Y; Chen H; Yang B; Ge M; Zhang Z
    J Sci Food Agric; 2022 Oct; 102(13):6100-6111. PubMed ID: 35474458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Nighttime Applications of Germicidal Ultraviolet Light Upon Powdery Mildew (
    Gadoury DM; Sapkota S; Cadle-Davidson L; Underhill A; McCann T; Gold KM; Gambhir N; Combs DB
    Plant Dis; 2023 May; 107(5):1452-1462. PubMed ID: 36281020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.
    Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N
    Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to
    Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R
    Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454
    [No Abstract]   [Full Text] [Related]  

  • 11. Use of LAMP for Assessing
    Si Ammour M; Castaldo E; Fedele G; Rossi V
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33187064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.
    Steel CC; Blackman JW; Schmidtke LM
    J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Cluster Tightness on Botrytis Bunch Rot in Six Chardonnay Clones.
    Vail ME; Wolpert JA; Gubler WD; Rademacher MR
    Plant Dis; 1998 Jan; 82(1):107-109. PubMed ID: 30857041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of
    Fedele G; González-Domínguez E; Si Ammour M; Languasco L; Rossi V
    Plant Dis; 2020 Mar; 104(3):808-816. PubMed ID: 31944905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of
    Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V
    Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.
    Rist F; Herzog K; Mack J; Richter R; Steinhage V; Töpfer R
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29498702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging contribution of social wasps to grape rot disease ecology.
    Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT
    PeerJ; 2017; 5():e3223. PubMed ID: 28462032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow.
    Tilbrook J; Tyerman SD
    Funct Plant Biol; 2009 Jun; 36(6):541-550. PubMed ID: 32688668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox and Hormonal Changes in the Transcriptome of Grape (
    Pogány M; Dankó T; Hegyi-Kaló J; Kámán-Tóth E; Szám DR; Hamow KÁ; Kalapos B; Kiss L; Fodor J; Gullner G; Váczy KZ; Barna B
    Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Antagonism Toward
    Calvo-Garrido C; Roudet J; Aveline N; Davidou L; Dupin S; Fermaud M
    Front Plant Sci; 2019; 10():105. PubMed ID: 30804972
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.