BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30743922)

  • 1. Acceleration of microiron-based dechlorination in water by contact with fibrous activated carbon.
    Vogel M; Kopinke FD; Mackenzie K
    Sci Total Environ; 2019 Apr; 660():1274-1282. PubMed ID: 30743922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time.
    Vogel M; Georgi A; Kopinke FD; Mackenzie K
    Sci Total Environ; 2019 May; 665():235-245. PubMed ID: 30772554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination.
    Gu Y; Wang B; He F; Bradley MJ; Tratnyek PG
    Environ Sci Technol; 2017 Nov; 51(21):12653-12662. PubMed ID: 28984446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.
    Su YF; Cheng YL; Shih YH
    J Environ Manage; 2013 Nov; 129():361-6. PubMed ID: 23994578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency.
    Velimirovic M; Auffan M; Carniato L; Micić Batka V; Schmid D; Wagner S; Borschneck D; Proux O; von der Kammer F; Hofmann T
    Sci Total Environ; 2018 Mar; 618():1619-1627. PubMed ID: 29111242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dechlorination of trichloroethene by sulfidated microscale zero-valent iron under low-frequency AC electromagnetic field.
    He F; Yu Y; Wan W; Liang L
    J Hazard Mater; 2022 Feb; 423(Pt A):127020. PubMed ID: 34481402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution.
    Lowry GV; Johnson KM
    Environ Sci Technol; 2004 Oct; 38(19):5208-16. PubMed ID: 15506219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of zero-valent iron and carbonaceous materials for reduction of DDT.
    Kopinke FD; Sühnholz S; Georgi A; Mackenzie K
    Chemosphere; 2020 Aug; 253():126712. PubMed ID: 32302905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition and stimulation of two perchloroethene degrading bacterial cultures by nano- and micro-scaled zero-valent iron particles.
    Summer D; Schöftner P; Watzinger A; Reichenauer TG
    Sci Total Environ; 2020 Jun; 722():137802. PubMed ID: 32199366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron.
    Shih YJ; Hsia KF; Chen CW; Chen CF; Dong CD
    Chemosphere; 2019 Feb; 216():40-47. PubMed ID: 30359915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.
    Tseng HH; Su JG; Liang C
    J Hazard Mater; 2011 Aug; 192(2):500-6. PubMed ID: 21676545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.
    Gunawardana B; Swedlund PJ; Singhal N; Nieuwoudt MK
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17797-17806. PubMed ID: 29675820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced trichloroethylene dechlorination by carbon-modified zero-valent iron: Revisiting the role of carbon additives.
    Guan X; Du X; Liu M; Qin H; Qiao J; Sun Y
    J Hazard Mater; 2020 Jul; 394():122564. PubMed ID: 32244144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles.
    Ruan X; Liu H; Wang J; Zhao D; Fan X
    Sci Total Environ; 2019 Dec; 697():133996. PubMed ID: 31476504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of non-reducible dissolved solutes on reductive dechlorination of trichloroethylene by ball milled zero valent irons.
    Gong L; Lv N; Qi J; Qiu X; Gu Y; He F
    J Hazard Mater; 2020 Sep; 396():122620. PubMed ID: 32315940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive Dechlorination of Chlorinated Ethenes at the Sulfidated Zero-Valent Iron Surface: A Mechanistic DFT Study.
    Brumovský M; Tunega D
    J Phys Chem C Nanomater Interfaces; 2024 Mar; 128(10):4180-4191. PubMed ID: 38505149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the contrasting effects of sulfidation on dechlorination of chlorinated aliphatic hydrocarbons by zero-valent iron.
    Sun Y; Zheng K; Du X; Qin H; Guan X
    Water Res; 2024 May; 255():121494. PubMed ID: 38552485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of carboxylic acids on the properties of zerovalent iron toward adsorption and degradation of trichloroethylene.
    Tso CP; Shih YH
    J Environ Manage; 2018 Jan; 206():817-825. PubMed ID: 29197807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.