These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30743922)

  • 41. Rapid decomposition of diclofenac in a magnetic field enhanced zero-valent iron/EDTA Fenton-like system.
    Zhou T; Feng K; Xiang W; Lv Y; Wu X; Mao J; He C
    Chemosphere; 2018 Feb; 193():968-977. PubMed ID: 29874773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.
    Cong X; Xue N; Wang S; Li K; Li F
    Sci Total Environ; 2010 Jul; 408(16):3418-23. PubMed ID: 20471666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective dechlorination of HCB by nanoscale Cu/Fe particles.
    Zhu N; Luan H; Yuan S; Chen J; Wu X; Wang L
    J Hazard Mater; 2010 Apr; 176(1-3):1101-5. PubMed ID: 19969417
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge.
    Wang T; Qin Y; Cao Y; Han B; Ren J
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22371-22381. PubMed ID: 28801857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction of chlorinated methanes with nano-scale Fe particles: effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction.
    Feng J; Zhu BW; Lim TT
    Chemosphere; 2008 Dec; 73(11):1817-23. PubMed ID: 18809199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dechlorination of chlorinated ethenes and acetylenes by palladized iron.
    Kim YH; Carraway ER
    Environ Technol; 2003 Jul; 24(7):809-19. PubMed ID: 12916834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sulfidation of Zero-Valent Iron by Direct Reaction with Elemental Sulfur in Water: Efficiencies, Mechanism, and Dechlorination of Trichloroethylene.
    Cai S; Chen B; Qiu X; Li J; Tratnyek PG; He F
    Environ Sci Technol; 2021 Jan; 55(1):645-654. PubMed ID: 33302625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.
    Chu W; Li X; Bond T; Gao N; Bin X; Wang Q; Ding S
    Water Res; 2016 Dec; 107():141-150. PubMed ID: 27837731
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.
    Zhang ZY; Lu M; Zhang ZZ; Xiao M; Zhang M
    J Hazard Mater; 2012 Dec; 243():105-11. PubMed ID: 23107289
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron.
    Zhang X; Deng B; Guo J; Wang Y; Lan Y
    J Environ Manage; 2011 Apr; 92(4):1328-33. PubMed ID: 21236559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater.
    Chen L; Jin S; Fallgren PH; Liu F; Colberg PJ
    Water Sci Technol; 2013; 67(6):1254-9. PubMed ID: 23508149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.
    Xin J; Han J; Zheng X; Shao H; Kolditz O
    J Environ Manage; 2015 Mar; 150():420-426. PubMed ID: 25556871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study: added value via stable carbon isotope analysis.
    Hirschorn SK; Grostern A; Lacrampe-Couloume G; Edwards EA; Mackinnon L; Repta C; Major DW; Sherwood Lollar B
    J Contam Hydrol; 2007 Dec; 94(3-4):249-60. PubMed ID: 17689820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature.
    Schaefer CE; Ho P; Gurr C; Berns E; Werth C
    J Contam Hydrol; 2017 Nov; 206():10-17. PubMed ID: 28965709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zerovalent iron in conjunction with surfactants to remediate sediments contaminated by polychlorinated biphenyls and nickel.
    Wu Y; Wang Y; Huang X; Chen S; Zhong X; Ni Z; Cai X; Liu X; Simonnot MO; Qiu R
    Chemosphere; 2017 Dec; 189():479-488. PubMed ID: 28957765
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of phosphate and sediment bacteria on trichloroethylene dechlorination with zero valent iron.
    Min JE; Park IS; Ko S; Shin WS; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):362-9. PubMed ID: 19184703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.