These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30743923)

  • 1. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques.
    Abdolahpur Monikh F; Chupani L; Vijver MG; Vancová M; Peijnenburg WJGM
    Sci Total Environ; 2019 Apr; 660():1283-1293. PubMed ID: 30743923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.
    Tiede K; Hassellöv M; Breitbarth E; Chaudhry Q; Boxall AB
    J Chromatogr A; 2009 Jan; 1216(3):503-9. PubMed ID: 18805541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.
    Krystek P; Brandsma S; Leonards P; de Boer J
    Talanta; 2016 Jan; 147():289-95. PubMed ID: 26592609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring LA-ICP-MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos.
    Böhme S; Stärk HJ; Kühnel D; Reemtsma T
    Anal Bioanal Chem; 2015 Jul; 407(18):5477-85. PubMed ID: 25943260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy.
    Luo P; Morrison I; Dudkiewicz A; Tiede K; Boyes E; O'Toole P; Park S; Boxall AB
    J Microsc; 2013 Apr; 250(1):32-41. PubMed ID: 23410110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical evaluation of the potential of ICP-MS-based systems in toxicological studies of metallic nanoparticles.
    Fernández-Trujillo S; Jiménez-Moreno M; Rodríguez-Fariñas N; Rodríguez Martín-Doimeadios RC
    Anal Bioanal Chem; 2024 May; 416(11):2657-2676. PubMed ID: 38329514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanometrology and its perspectives in environmental research.
    Kim HA; Seo JK; Kim T; Lee BT
    Environ Health Toxicol; 2014; 29():e2014016. PubMed ID: 25384386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches.
    Matranga V; Corsi I
    Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices.
    Tiede K; Tear SP; David H; Boxall AB
    Water Res; 2009 Jul; 43(13):3335-43. PubMed ID: 19501872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of metal uptake in single organisms, Corophium volutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laser ablation/inductively coupled plasma mass spectrometry.
    von der Au M; Karbach H; Bell AM; Bauer OB; Karst U; Meermann B
    Rapid Commun Mass Spectrom; 2021 Jan; 35(2):e8953. PubMed ID: 32970910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis.
    Johnson ME; Hanna SK; Montoro Bustos AR; Sims CM; Elliott LC; Lingayat A; Johnston AC; Nikoobakht B; Elliott JT; Holbrook RD; Scott KC; Murphy KE; Petersen EJ; Yu LL; Nelson BC
    ACS Nano; 2017 Jan; 11(1):526-540. PubMed ID: 27983787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix.
    Heroult J; Nischwitz V; Bartczak D; Goenaga-Infante H
    Anal Bioanal Chem; 2014 Jun; 406(16):3919-27. PubMed ID: 24817355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater.
    Timerbaev AR; Kuznetsova OV; Keppler BK
    Talanta; 2021 May; 226():122201. PubMed ID: 33676721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.
    Gray EP; Coleman JG; Bednar AJ; Kennedy AJ; Ranville JF; Higgins CP
    Environ Sci Technol; 2013 Dec; 47(24):14315-23. PubMed ID: 24218983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and Evaluation of Pretreatment Method for sp-ICP-MS to Reveal the Distribution of Silver Nanoparticles in the Body.
    Ishizaka T; Nagano K; Tasaki I; Tao H; Gao JQ; Harada K; Hirata K; Saito S; Tsujino H; Higashisaka K; Tsutsumi Y
    Nanoscale Res Lett; 2019 May; 14(1):180. PubMed ID: 31139947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.
    Sánchez-García L; Bolea E; Laborda F; Cubel C; Ferrer P; Gianolio D; da Silva I; Castillo JR
    J Chromatogr A; 2016 Mar; 1438():205-15. PubMed ID: 26903472
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.